delve/pkg/proc/i386_arch.go
Alessandro Arzilli d963eb1057
proc: read context from sigtrampgo, fixes TestCgoStacktrace2 on 1.21 (#3401)
* logflags,proc: flag to log stacktrace execution

Add a log flag to write logs about what the stacktracer does.

* proc: read context from sigtrampgo, fixes TestCgoStacktrace2 on 1.21

Changes stacktrace code to read the signal context from the arguments
of sigtrampgo.
Also changes the automatic fatalthrow breakpoint for go 1.21.
In combination these two changes fix TestCgoStacktrace2 on Go 1.21 on
various platforms.
2023-06-27 09:33:07 -07:00

240 lines
8.1 KiB
Go

package proc
import (
"encoding/binary"
"fmt"
"strings"
"github.com/go-delve/delve/pkg/dwarf/frame"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/regnum"
)
var i386BreakInstruction = []byte{0xCC}
// I386Arch returns an initialized I386Arch
// struct.
func I386Arch(goos string) *Arch {
return &Arch{
Name: "386",
ptrSize: 4,
maxInstructionLength: 15,
breakpointInstruction: i386BreakInstruction,
altBreakpointInstruction: []byte{0xcd, 0x03},
breakInstrMovesPC: true,
derefTLS: false,
prologues: prologuesI386,
fixFrameUnwindContext: i386FixFrameUnwindContext,
switchStack: i386SwitchStack,
regSize: i386RegSize,
RegistersToDwarfRegisters: i386RegistersToDwarfRegisters,
addrAndStackRegsToDwarfRegisters: i386AddrAndStackRegsToDwarfRegisters,
DwarfRegisterToString: i386DwarfRegisterToString,
inhibitStepInto: i386InhibitStepInto,
asmDecode: i386AsmDecode,
PCRegNum: regnum.I386_Eip,
SPRegNum: regnum.I386_Esp,
asmRegisters: i386AsmRegisters,
RegisterNameToDwarf: nameToDwarfFunc(regnum.I386NameToDwarf),
RegnumToString: regnum.I386ToName,
}
}
func i386FixFrameUnwindContext(fctxt *frame.FrameContext, pc uint64, bi *BinaryInfo) *frame.FrameContext {
i := bi.Arch
if i.sigreturnfn == nil {
i.sigreturnfn = bi.lookupOneFunc("runtime.sigreturn")
}
if fctxt == nil || (i.sigreturnfn != nil && pc >= i.sigreturnfn.Entry && pc < i.sigreturnfn.End) {
// When there's no frame descriptor entry use BP (the frame pointer) instead
// - return register is [bp + i.PtrSize()] (i.e. [cfa-i.PtrSize()])
// - cfa is bp + i.PtrSize()*2
// - bp is [bp] (i.e. [cfa-i.PtrSize()*2])
// - sp is cfa
// When the signal handler runs it will move the execution to the signal
// handling stack (installed using the sigaltstack system call).
// This isn't i proper stack switch: the pointer to g in TLS will still
// refer to whatever g was executing on that thread before the signal was
// received.
// Since go did not execute i stack switch the previous value of sp, pc
// and bp is not saved inside g.sched, as it normally would.
// The only way to recover is to either read sp/pc from the signal context
// parameter (the ucontext_t* parameter) or to unconditionally follow the
// frame pointer when we get to runtime.sigreturn (which is what we do
// here).
return &frame.FrameContext{
RetAddrReg: regnum.I386_Eip,
Regs: map[uint64]frame.DWRule{
regnum.I386_Eip: {
Rule: frame.RuleOffset,
Offset: int64(-i.PtrSize()),
},
regnum.I386_Ebp: {
Rule: frame.RuleOffset,
Offset: int64(-2 * i.PtrSize()),
},
regnum.I386_Esp: {
Rule: frame.RuleValOffset,
Offset: 0,
},
},
CFA: frame.DWRule{
Rule: frame.RuleCFA,
Reg: regnum.I386_Ebp,
Offset: int64(2 * i.PtrSize()),
},
}
}
if i.crosscall2fn == nil {
i.crosscall2fn = bi.lookupOneFunc("crosscall2")
}
// TODO(chainhelen), need to check whether there is a bad frame descriptor like amd64.
// crosscall2 is defined in $GOROOT/src/runtime/cgo/asm_386.s.
if i.crosscall2fn != nil && pc >= i.crosscall2fn.Entry && pc < i.crosscall2fn.End {
rule := fctxt.CFA
fctxt.CFA = rule
}
// We assume that EBP is the frame pointer and we want to keep it updated,
// so that we can use it to unwind the stack even when we encounter frames
// without descriptor entries.
// If there isn't i rule already we emit one.
if fctxt.Regs[regnum.I386_Ebp].Rule == frame.RuleUndefined {
fctxt.Regs[regnum.I386_Ebp] = frame.DWRule{
Rule: frame.RuleFramePointer,
Reg: regnum.I386_Ebp,
Offset: 0,
}
}
return fctxt
}
// SwitchStack will use the current frame to determine if it's time to
func i386SwitchStack(it *stackIterator, _ *op.DwarfRegisters) bool {
if it.frame.Current.Fn == nil {
if it.systemstack && it.g != nil && it.top {
it.switchToGoroutineStack()
return true
}
return false
}
switch it.frame.Current.Fn.Name {
case "runtime.asmcgocall", "runtime.cgocallback_gofunc": // TODO(chainhelen), need to support cgo stacktraces.
return false
case "runtime.goexit", "runtime.rt0_go", "runtime.mcall":
// Look for "top of stack" functions.
it.atend = true
return true
case "runtime.mstart":
// Calls to runtime.systemstack will switch to the systemstack then:
// 1. alter the goroutine stack so that it looks like systemstack_switch
// was called
// 2. alter the system stack so that it looks like the bottom-most frame
// belongs to runtime.mstart
// If we find a runtime.mstart frame on the system stack of a goroutine
// parked on runtime.systemstack_switch we assume runtime.systemstack was
// called and continue tracing from the parked position.
if it.top || !it.systemstack || it.g == nil {
return false
}
if fn := it.bi.PCToFunc(it.g.PC); fn == nil || fn.Name != "runtime.systemstack_switch" {
return false
}
it.switchToGoroutineStack()
return true
case "runtime.newstack", "runtime.systemstack":
if it.systemstack && it.g != nil {
it.switchToGoroutineStack()
return true
}
return false
default:
return false
}
}
// RegSize returns the size (in bytes) of register regnum.
// The mapping between hardware registers and DWARF registers is specified
// in the System V ABI Intel386 Architecture Processor Supplement page 25,
// table 2.14
// https://www.uclibc.org/docs/psABI-i386.pdf
func i386RegSize(regnum uint64) int {
// XMM registers
if regnum >= 21 && regnum <= 36 {
return 16
}
// x87 registers
if regnum >= 11 && regnum <= 18 {
return 10
}
return 4
}
func i386RegistersToDwarfRegisters(staticBase uint64, regs Registers) *op.DwarfRegisters {
dregs := initDwarfRegistersFromSlice(regnum.I386MaxRegNum(), regs, regnum.I386NameToDwarf)
dr := op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.I386_Eip, regnum.I386_Esp, regnum.I386_Ebp, 0)
dr.SetLoadMoreCallback(loadMoreDwarfRegistersFromSliceFunc(dr, regs, regnum.I386NameToDwarf))
return dr
}
func i386AddrAndStackRegsToDwarfRegisters(staticBase, pc, sp, bp, lr uint64) op.DwarfRegisters {
dregs := make([]*op.DwarfRegister, regnum.I386_Eip+1)
dregs[regnum.I386_Eip] = op.DwarfRegisterFromUint64(pc)
dregs[regnum.I386_Esp] = op.DwarfRegisterFromUint64(sp)
dregs[regnum.I386_Ebp] = op.DwarfRegisterFromUint64(bp)
return *op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.I386_Eip, regnum.I386_Esp, regnum.I386_Ebp, 0)
}
func i386DwarfRegisterToString(j int, reg *op.DwarfRegister) (name string, floatingPoint bool, repr string) {
name = regnum.I386ToName(uint64(j))
if reg == nil {
return name, false, ""
}
switch n := strings.ToLower(name); n {
case "eflags":
return name, false, eflagsDescription.Describe(reg.Uint64Val, 32)
case "tw", "fop":
return name, true, fmt.Sprintf("%#04x", reg.Uint64Val)
default:
if reg.Bytes != nil && strings.HasPrefix(n, "xmm") {
return name, true, formatSSEReg(name, reg.Bytes)
} else if reg.Bytes != nil && strings.HasPrefix(n, "st(") {
return name, true, formatX87Reg(reg.Bytes)
} else if reg.Bytes == nil || (reg.Bytes != nil && len(reg.Bytes) <= 8) {
return name, false, fmt.Sprintf("%#016x", reg.Uint64Val)
} else {
return name, false, fmt.Sprintf("%#x", reg.Bytes)
}
}
}
// i386InhibitStepInto returns whether StepBreakpoint can be set at pc.
// When cgo or pie on 386 linux, compiler will insert more instructions (ex: call __x86.get_pc_thunk.).
// StepBreakpoint shouldn't be set on __x86.get_pc_thunk and skip it.
// See comments on stacksplit in $GOROOT/src/cmd/internal/obj/x86/obj6.go for generated instructions details.
func i386InhibitStepInto(bi *BinaryInfo, pc uint64) bool {
if bi.SymNames != nil && bi.SymNames[pc] != nil &&
strings.HasPrefix(bi.SymNames[pc].Name, "__x86.get_pc_thunk.") {
return true
}
return false
}