delve/pkg/proc/fncall.go
Alessandro Arzilli dd4fd5dc9c proc: allow simultaneous call injection to multiple goroutines (#1591)
* proc: allow simultaneous call injection to multiple goroutines

Changes the call injection code so that we can have multiple call
injections going on at the same time as long as they happen on distinct
goroutines.

* proc: fix EvalExpressionWithCalls for constant expressions

The lack of address of constant expressions would confuse EvalExpressionWithCalls

Fixes #1577
2019-06-30 10:44:30 -07:00

908 lines
28 KiB
Go

package proc
import (
"debug/dwarf"
"encoding/binary"
"errors"
"fmt"
"go/ast"
"go/constant"
"go/token"
"reflect"
"sort"
"strconv"
"strings"
"github.com/go-delve/delve/pkg/dwarf/godwarf"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/reader"
"github.com/go-delve/delve/pkg/goversion"
"github.com/go-delve/delve/pkg/logflags"
"golang.org/x/arch/x86/x86asm"
)
// This file implements the function call injection introduced in go1.11.
//
// The protocol is described in $GOROOT/src/runtime/asm_amd64.s in the
// comments for function runtime·debugCallV1.
//
// The main entry point is EvalExpressionWithCalls which will start a goroutine to
// evaluate the provided expression.
// This goroutine can either return immediately, if no function calls were
// needed, or write a continue request to the scope.callCtx.continueRequest
// channel. When this happens EvalExpressionWithCalls will call Continue and
// return.
//
// The Continue loop will write to scope.callCtx.continueCompleted when it
// hits a breakpoint in the call injection protocol.
//
// The work of setting up the function call and executing the protocol is
// done by evalFunctionCall and funcCallStep.
const (
debugCallFunctionNamePrefix1 = "debugCall"
debugCallFunctionNamePrefix2 = "runtime.debugCall"
debugCallFunctionName = "runtime.debugCallV1"
maxArgFrameSize = 65535
)
var (
errFuncCallUnsupported = errors.New("function calls not supported by this version of Go")
errFuncCallUnsupportedBackend = errors.New("backend does not support function calls")
errFuncCallInProgress = errors.New("cannot call function while another function call is already in progress")
errNotACallExpr = errors.New("not a function call")
errNoGoroutine = errors.New("no goroutine selected")
errGoroutineNotRunning = errors.New("selected goroutine not running")
errNotEnoughStack = errors.New("not enough stack space")
errTooManyArguments = errors.New("too many arguments")
errNotEnoughArguments = errors.New("not enough arguments")
errNoAddrUnsupported = errors.New("arguments to a function call must have an address")
errNotAGoFunction = errors.New("not a Go function")
errFuncCallNotAllowed = errors.New("function calls not allowed without using 'call'")
errFuncCallNotAllowedStrAlloc = errors.New("literal string can not be allocated because function calls are not allowed without using 'call'")
)
type functionCallState struct {
// savedRegs contains the saved registers
savedRegs Registers
// err contains a saved error
err error
// expr is the expression being evaluated
expr *ast.CallExpr
// fn is the function that is being called
fn *Function
// receiver is the receiver argument for the function
receiver *Variable
// closureAddr is the address of the closure being called
closureAddr uint64
// formalArgs are the formal arguments of fn
formalArgs []funcCallArg
// argFrameSize contains the size of the arguments
argFrameSize int64
// retvars contains the return variables after the function call terminates without panic'ing
retvars []*Variable
// panicvar is a variable used to store the value of the panic, if the
// called function panics.
panicvar *Variable
// lateCallFailure is set to true if the function call could not be
// completed after we started evaluating the arguments.
lateCallFailure bool
}
type callContext struct {
p Process
// checkEscape is true if the escape check should be performed.
// See service/api.DebuggerCommand.UnsafeCall in service/api/types.go.
checkEscape bool
// retLoadCfg is the load configuration used to load return values
retLoadCfg LoadConfig
// Write to continueRequest to request a call to Continue from the
// debugger's main goroutine.
// Read from continueCompleted to wait for the target process to stop at
// one of the interaction point of the function call protocol.
// To signal that evaluation is completed a value will be written to
// continueRequest having cont == false and the return values in ret.
continueRequest chan<- continueRequest
continueCompleted <-chan *G
}
type continueRequest struct {
cont bool
err error
ret *Variable
}
func (callCtx *callContext) doContinue() *G {
callCtx.continueRequest <- continueRequest{cont: true}
return <-callCtx.continueCompleted
}
func (callCtx *callContext) doReturn(ret *Variable, err error) {
if callCtx == nil {
return
}
callCtx.continueRequest <- continueRequest{cont: false, ret: ret, err: err}
}
// EvalExpressionWithCalls is like EvalExpression but allows function calls in 'expr'.
// Because this can only be done in the current goroutine, unlike
// EvalExpression, EvalExpressionWithCalls is not a method of EvalScope.
func EvalExpressionWithCalls(p Process, g *G, expr string, retLoadCfg LoadConfig, checkEscape bool) error {
bi := p.BinInfo()
if !p.Common().fncallEnabled {
return errFuncCallUnsupportedBackend
}
// check that the target goroutine is running
if g == nil {
return errNoGoroutine
}
if g.Status != Grunning || g.Thread == nil {
return errGoroutineNotRunning
}
if callinj := p.Common().fncallForG[g.ID]; callinj != nil && callinj.continueCompleted != nil {
return errFuncCallInProgress
}
dbgcallfn := bi.LookupFunc[debugCallFunctionName]
if dbgcallfn == nil {
return errFuncCallUnsupported
}
scope, err := GoroutineScope(g.Thread)
if err != nil {
return err
}
continueRequest := make(chan continueRequest)
continueCompleted := make(chan *G)
scope.callCtx = &callContext{
p: p,
checkEscape: checkEscape,
retLoadCfg: retLoadCfg,
continueRequest: continueRequest,
continueCompleted: continueCompleted,
}
p.Common().fncallForG[g.ID] = &callInjection{
continueCompleted,
continueRequest,
}
go scope.EvalExpression(expr, retLoadCfg)
contReq, ok := <-continueRequest
if contReq.cont {
return Continue(p)
}
return finishEvalExpressionWithCalls(p, g, contReq, ok)
}
func finishEvalExpressionWithCalls(p Process, g *G, contReq continueRequest, ok bool) error {
fncallLog("stashing return values for %d in thread=%d\n", g.ID, g.Thread.ThreadID())
var err error
if !ok {
err = errors.New("internal error EvalExpressionWithCalls didn't return anything")
} else if contReq.err != nil {
if fpe, ispanic := contReq.err.(fncallPanicErr); ispanic {
g.Thread.Common().returnValues = []*Variable{fpe.panicVar}
} else {
err = contReq.err
}
} else if contReq.ret == nil {
g.Thread.Common().returnValues = nil
} else if contReq.ret.Addr == 0 && contReq.ret.DwarfType == nil && contReq.ret.Kind == reflect.Invalid {
// this is a variable returned by a function call with multiple return values
r := make([]*Variable, len(contReq.ret.Children))
for i := range contReq.ret.Children {
r[i] = &contReq.ret.Children[i]
}
g.Thread.Common().returnValues = r
} else {
g.Thread.Common().returnValues = []*Variable{contReq.ret}
}
close(p.Common().fncallForG[g.ID].continueCompleted)
delete(p.Common().fncallForG, g.ID)
return err
}
// evalFunctionCall evaluates a function call.
// If this is a built-in function it's evaluated directly.
// Otherwise this will start the function call injection protocol and
// request that the target process resumes.
// See the comment describing the field EvalScope.callCtx for a description
// of the preconditions that make starting the function call protocol
// possible.
// See runtime.debugCallV1 in $GOROOT/src/runtime/asm_amd64.s for a
// description of the protocol.
func (scope *EvalScope) evalFunctionCall(node *ast.CallExpr) (*Variable, error) {
r, err := scope.evalBuiltinCall(node)
if r != nil || err != nil {
// it was a builtin call
return r, err
}
if scope.callCtx == nil {
return nil, errFuncCallNotAllowed
}
p := scope.callCtx.p
bi := scope.BinInfo
if !p.Common().fncallEnabled {
return nil, errFuncCallUnsupportedBackend
}
dbgcallfn := bi.LookupFunc[debugCallFunctionName]
if dbgcallfn == nil {
return nil, errFuncCallUnsupported
}
// check that there are at least 256 bytes free on the stack
regs, err := scope.g.Thread.Registers(true)
if err != nil {
return nil, err
}
regs = regs.Copy()
if regs.SP()-256 <= scope.g.stacklo {
return nil, errNotEnoughStack
}
_, err = regs.Get(int(x86asm.RAX))
if err != nil {
return nil, errFuncCallUnsupportedBackend
}
fncall := functionCallState{
expr: node,
savedRegs: regs,
}
err = funcCallEvalFuncExpr(scope, &fncall, false)
if err != nil {
return nil, err
}
if err := callOP(bi, scope.g.Thread, regs, dbgcallfn.Entry); err != nil {
return nil, err
}
// write the desired argument frame size at SP-(2*pointer_size) (the extra pointer is the saved PC)
if err := writePointer(bi, scope.g.Thread, regs.SP()-3*uint64(bi.Arch.PtrSize()), uint64(fncall.argFrameSize)); err != nil {
return nil, err
}
fncallLog("function call initiated %v frame size %d", fncall.fn, fncall.argFrameSize)
spoff := int64(scope.Regs.Uint64Val(scope.Regs.SPRegNum)) - int64(scope.g.stackhi)
bpoff := int64(scope.Regs.Uint64Val(scope.Regs.BPRegNum)) - int64(scope.g.stackhi)
fboff := scope.Regs.FrameBase - int64(scope.g.stackhi)
for {
scope.g = scope.callCtx.doContinue()
// adjust the value of registers inside scope
for regnum := range scope.Regs.Regs {
switch uint64(regnum) {
case scope.Regs.PCRegNum, scope.Regs.SPRegNum, scope.Regs.BPRegNum:
// leave these alone
default:
// every other register is dirty and unrecoverable
scope.Regs.Regs[regnum] = nil
}
}
scope.Regs.Regs[scope.Regs.SPRegNum].Uint64Val = uint64(spoff + int64(scope.g.stackhi))
scope.Regs.Regs[scope.Regs.BPRegNum].Uint64Val = uint64(bpoff + int64(scope.g.stackhi))
scope.Regs.FrameBase = fboff + int64(scope.g.stackhi)
scope.Regs.CFA = scope.frameOffset + int64(scope.g.stackhi)
finished := funcCallStep(scope, &fncall)
if finished {
break
}
}
if fncall.err != nil {
return nil, fncall.err
}
if fncall.panicvar != nil {
return nil, fncallPanicErr{fncall.panicvar}
}
switch len(fncall.retvars) {
case 0:
r := scope.newVariable("", 0, nil, nil)
r.loaded = true
r.Unreadable = errors.New("no return values")
return r, nil
case 1:
return fncall.retvars[0], nil
default:
// create a fake variable without address or type to return multiple values
r := scope.newVariable("", 0, nil, nil)
r.loaded = true
r.Children = make([]Variable, len(fncall.retvars))
for i := range fncall.retvars {
r.Children[i] = *fncall.retvars[i]
}
return r, nil
}
}
// fncallPanicErr is the error returned if a called function panics
type fncallPanicErr struct {
panicVar *Variable
}
func (err fncallPanicErr) Error() string {
return fmt.Sprintf("panic calling a function")
}
func fncallLog(fmtstr string, args ...interface{}) {
logflags.FnCallLogger().Infof(fmtstr, args...)
}
// writePointer writes val as an architecture pointer at addr in mem.
func writePointer(bi *BinaryInfo, mem MemoryReadWriter, addr, val uint64) error {
ptrbuf := make([]byte, bi.Arch.PtrSize())
// TODO: use target architecture endianness instead of LittleEndian
switch len(ptrbuf) {
case 4:
binary.LittleEndian.PutUint32(ptrbuf, uint32(val))
case 8:
binary.LittleEndian.PutUint64(ptrbuf, val)
default:
panic(fmt.Errorf("unsupported pointer size %d", len(ptrbuf)))
}
_, err := mem.WriteMemory(uintptr(addr), ptrbuf)
return err
}
// callOP simulates a call instruction on the given thread:
// * pushes the current value of PC on the stack (adjusting SP)
// * changes the value of PC to callAddr
// Note: regs are NOT updated!
func callOP(bi *BinaryInfo, thread Thread, regs Registers, callAddr uint64) error {
sp := regs.SP()
// push PC on the stack
sp -= uint64(bi.Arch.PtrSize())
if err := thread.SetSP(sp); err != nil {
return err
}
if err := writePointer(bi, thread, sp, regs.PC()); err != nil {
return err
}
return thread.SetPC(callAddr)
}
// funcCallEvalFuncExpr evaluates expr.Fun and returns the function that we're trying to call.
// If allowCalls is false function calls will be disabled even if scope.callCtx != nil
func funcCallEvalFuncExpr(scope *EvalScope, fncall *functionCallState, allowCalls bool) error {
bi := scope.BinInfo
if !allowCalls {
callCtx := scope.callCtx
scope.callCtx = nil
defer func() {
scope.callCtx = callCtx
}()
}
fnvar, err := scope.evalAST(fncall.expr.Fun)
if err == errFuncCallNotAllowed {
// we can't determine the frame size because callexpr.Fun can't be
// evaluated without enabling function calls, just set up an argument
// frame for the maximum possible argument size.
fncall.argFrameSize = maxArgFrameSize
return nil
} else if err != nil {
return err
}
if fnvar.Kind != reflect.Func {
return fmt.Errorf("expression %q is not a function", exprToString(fncall.expr.Fun))
}
fnvar.loadValue(LoadConfig{false, 0, 0, 0, 0, 0})
if fnvar.Unreadable != nil {
return fnvar.Unreadable
}
if fnvar.Base == 0 {
return errors.New("nil pointer dereference")
}
fncall.fn = bi.PCToFunc(uint64(fnvar.Base))
if fncall.fn == nil {
return fmt.Errorf("could not find DIE for function %q", exprToString(fncall.expr.Fun))
}
if !fncall.fn.cu.isgo {
return errNotAGoFunction
}
fncall.closureAddr = fnvar.closureAddr
fncall.argFrameSize, fncall.formalArgs, err = funcCallArgs(fncall.fn, bi, false)
if err != nil {
return err
}
argnum := len(fncall.expr.Args)
if len(fnvar.Children) > 0 {
argnum++
fncall.receiver = &fnvar.Children[0]
fncall.receiver.Name = exprToString(fncall.expr.Fun)
}
if argnum > len(fncall.formalArgs) {
return errTooManyArguments
}
if argnum < len(fncall.formalArgs) {
return errNotEnoughArguments
}
return nil
}
type funcCallArg struct {
name string
typ godwarf.Type
off int64
isret bool
}
// funcCallEvalArgs evaluates the arguments of the function call, copying
// the into the argument frame starting at argFrameAddr.
func funcCallEvalArgs(scope *EvalScope, fncall *functionCallState, argFrameAddr uint64) error {
if scope.g == nil {
// this should never happen
return errNoGoroutine
}
if fncall.receiver != nil {
err := funcCallCopyOneArg(scope, fncall, fncall.receiver, &fncall.formalArgs[0], argFrameAddr)
if err != nil {
return err
}
fncall.formalArgs = fncall.formalArgs[1:]
}
for i := range fncall.formalArgs {
formalArg := &fncall.formalArgs[i]
actualArg, err := scope.evalAST(fncall.expr.Args[i])
if err != nil {
return fmt.Errorf("error evaluating %q as argument %s in function %s: %v", exprToString(fncall.expr.Args[i]), formalArg.name, fncall.fn.Name, err)
}
actualArg.Name = exprToString(fncall.expr.Args[i])
err = funcCallCopyOneArg(scope, fncall, actualArg, formalArg, argFrameAddr)
if err != nil {
return err
}
}
return nil
}
func funcCallCopyOneArg(scope *EvalScope, fncall *functionCallState, actualArg *Variable, formalArg *funcCallArg, argFrameAddr uint64) error {
if scope.callCtx.checkEscape {
//TODO(aarzilli): only apply the escapeCheck to leaking parameters.
if err := escapeCheck(actualArg, formalArg.name, scope.g); err != nil {
return fmt.Errorf("cannot use %s as argument %s in function %s: %v", actualArg.Name, formalArg.name, fncall.fn.Name, err)
}
}
//TODO(aarzilli): autmoatic wrapping in interfaces for cases not handled
// by convertToEface.
formalArgVar := newVariable(formalArg.name, uintptr(formalArg.off+int64(argFrameAddr)), formalArg.typ, scope.BinInfo, scope.Mem)
if err := scope.setValue(formalArgVar, actualArg, actualArg.Name); err != nil {
return err
}
return nil
}
func funcCallArgs(fn *Function, bi *BinaryInfo, includeRet bool) (argFrameSize int64, formalArgs []funcCallArg, err error) {
const CFA = 0x1000
vrdr := reader.Variables(fn.cu.image.dwarf, fn.offset, reader.ToRelAddr(fn.Entry, fn.cu.image.StaticBase), int(^uint(0)>>1), false, true)
trustArgOrder := bi.Producer() != "" && goversion.ProducerAfterOrEqual(bi.Producer(), 1, 12)
// typechecks arguments, calculates argument frame size
for vrdr.Next() {
e := vrdr.Entry()
if e.Tag != dwarf.TagFormalParameter {
continue
}
entry, argname, typ, err := readVarEntry(e, fn.cu.image)
if err != nil {
return 0, nil, err
}
typ = resolveTypedef(typ)
var off int64
if trustArgOrder && fn.Name == "runtime.mallocgc" {
// runtime is always optimized and optimized code sometimes doesn't have
// location info for arguments, but we still want to call runtime.mallocgc.
off = argFrameSize
} else {
locprog, _, err := bi.locationExpr(entry, dwarf.AttrLocation, fn.Entry)
if err != nil {
return 0, nil, fmt.Errorf("could not get argument location of %s: %v", argname, err)
}
off, _, err = op.ExecuteStackProgram(op.DwarfRegisters{CFA: CFA, FrameBase: CFA}, locprog)
if err != nil {
return 0, nil, fmt.Errorf("unsupported location expression for argument %s: %v", argname, err)
}
off -= CFA
}
if e := off + typ.Size(); e > argFrameSize {
argFrameSize = e
}
if isret, _ := entry.Val(dwarf.AttrVarParam).(bool); !isret || includeRet {
formalArgs = append(formalArgs, funcCallArg{name: argname, typ: typ, off: off, isret: isret})
}
}
if err := vrdr.Err(); err != nil {
return 0, nil, fmt.Errorf("DWARF read error: %v", err)
}
sort.Slice(formalArgs, func(i, j int) bool {
return formalArgs[i].off < formalArgs[j].off
})
return argFrameSize, formalArgs, nil
}
func escapeCheck(v *Variable, name string, g *G) error {
switch v.Kind {
case reflect.Ptr:
var w *Variable
if len(v.Children) == 1 {
// this branch is here to support pointers constructed with typecasts from ints or the '&' operator
w = &v.Children[0]
} else {
w = v.maybeDereference()
}
return escapeCheckPointer(w.Addr, name, g)
case reflect.Chan, reflect.String, reflect.Slice:
return escapeCheckPointer(v.Base, name, g)
case reflect.Map:
sv := v.clone()
sv.RealType = resolveTypedef(&(v.RealType.(*godwarf.MapType).TypedefType))
sv = sv.maybeDereference()
return escapeCheckPointer(sv.Addr, name, g)
case reflect.Struct:
t := v.RealType.(*godwarf.StructType)
for _, field := range t.Field {
fv, _ := v.toField(field)
if err := escapeCheck(fv, fmt.Sprintf("%s.%s", name, field.Name), g); err != nil {
return err
}
}
case reflect.Array:
for i := int64(0); i < v.Len; i++ {
sv, _ := v.sliceAccess(int(i))
if err := escapeCheck(sv, fmt.Sprintf("%s[%d]", name, i), g); err != nil {
return err
}
}
case reflect.Func:
if err := escapeCheckPointer(uintptr(v.funcvalAddr()), name, g); err != nil {
return err
}
}
return nil
}
func escapeCheckPointer(addr uintptr, name string, g *G) error {
if uint64(addr) >= g.stacklo && uint64(addr) < g.stackhi {
return fmt.Errorf("stack object passed to escaping pointer: %s", name)
}
return nil
}
const (
debugCallAXPrecheckFailed = 8
debugCallAXCompleteCall = 0
debugCallAXReadReturn = 1
debugCallAXReadPanic = 2
debugCallAXRestoreRegisters = 16
)
// funcCallStep executes one step of the function call injection protocol.
func funcCallStep(callScope *EvalScope, fncall *functionCallState) bool {
p := callScope.callCtx.p
bi := p.BinInfo()
thread := callScope.g.Thread
regs, err := thread.Registers(false)
if err != nil {
fncall.err = err
return true
}
regs = regs.Copy()
rax, _ := regs.Get(int(x86asm.RAX))
if logflags.FnCall() {
loc, _ := thread.Location()
var pc uint64
var fnname string
if loc != nil {
pc = loc.PC
if loc.Fn != nil {
fnname = loc.Fn.Name
}
}
fncallLog("function call interrupt gid=%d thread=%d rax=%#x (PC=%#x in %s)", callScope.g.ID, thread.ThreadID(), rax, pc, fnname)
}
switch rax {
case debugCallAXPrecheckFailed:
// get error from top of the stack and return it to user
errvar, err := readTopstackVariable(thread, regs, "string", loadFullValue)
if err != nil {
fncall.err = fmt.Errorf("could not get precheck error reason: %v", err)
break
}
errvar.Name = "err"
fncall.err = fmt.Errorf("%v", constant.StringVal(errvar.Value))
case debugCallAXCompleteCall:
// evaluate arguments of the target function, copy them into its argument frame and call the function
if fncall.fn == nil || fncall.receiver != nil || fncall.closureAddr != 0 {
// if we couldn't figure out which function we are calling before
// (because the function we are calling is the return value of a call to
// another function) now we have to figure it out by recursively
// evaluating the function calls.
// This also needs to be done if the function call has a receiver
// argument or a closure address (because those addresses could be on the stack
// and have changed position between the start of the call and now).
err := funcCallEvalFuncExpr(callScope, fncall, true)
if err != nil {
fncall.err = err
fncall.lateCallFailure = true
break
}
//TODO: double check that function call size isn't too big
}
// instead of evaluating the arguments we start first by pushing the call
// on the stack, this is the opposite of what would happen normally but
// it's necessary because otherwise the GC wouldn't be able to deal with
// the argument frame.
if fncall.closureAddr != 0 {
// When calling a function pointer we must set the DX register to the
// address of the function pointer itself.
thread.SetDX(fncall.closureAddr)
}
callOP(bi, thread, regs, fncall.fn.Entry)
err := funcCallEvalArgs(callScope, fncall, regs.SP())
if err != nil {
// rolling back the call, note: this works because we called regs.Copy() above
thread.SetSP(regs.SP())
thread.SetPC(regs.PC())
fncall.err = err
fncall.lateCallFailure = true
break
}
case debugCallAXRestoreRegisters:
// runtime requests that we restore the registers (all except pc and sp),
// this is also the last step of the function call protocol.
pc, sp := regs.PC(), regs.SP()
if err := thread.RestoreRegisters(fncall.savedRegs); err != nil {
fncall.err = fmt.Errorf("could not restore registers: %v", err)
}
if err := thread.SetPC(pc); err != nil {
fncall.err = fmt.Errorf("could not restore PC: %v", err)
}
if err := thread.SetSP(sp); err != nil {
fncall.err = fmt.Errorf("could not restore SP: %v", err)
}
if err := stepInstructionOut(p, thread, debugCallFunctionName, debugCallFunctionName); err != nil {
fncall.err = fmt.Errorf("could not step out of %s: %v", debugCallFunctionName, err)
}
return true
case debugCallAXReadReturn:
// read return arguments from stack
if fncall.panicvar != nil || fncall.lateCallFailure {
break
}
retScope, err := ThreadScope(thread)
if err != nil {
fncall.err = fmt.Errorf("could not get return values: %v", err)
break
}
// pretend we are still inside the function we called
fakeFunctionEntryScope(retScope, fncall.fn, int64(regs.SP()), regs.SP()-uint64(bi.Arch.PtrSize()))
fncall.retvars, err = retScope.Locals()
if err != nil {
fncall.err = fmt.Errorf("could not get return values: %v", err)
break
}
fncall.retvars = filterVariables(fncall.retvars, func(v *Variable) bool {
return (v.Flags & VariableReturnArgument) != 0
})
if fncall.fn.Name == "runtime.mallocgc" && fncall.retvars[0].Unreadable != nil {
// return values never have a location for optimized functions and the
// runtime is always optimized. However we want to call runtime.mallocgc,
// so we fix the address of the return value manually.
fncall.retvars[0].Unreadable = nil
lastArg := fncall.formalArgs[len(fncall.formalArgs)-1]
fncall.retvars[0].Addr = uintptr(retScope.Regs.CFA + lastArg.off + int64(bi.Arch.PtrSize()))
}
loadValues(fncall.retvars, callScope.callCtx.retLoadCfg)
case debugCallAXReadPanic:
// read panic value from stack
fncall.panicvar, err = readTopstackVariable(thread, regs, "interface {}", callScope.callCtx.retLoadCfg)
if err != nil {
fncall.err = fmt.Errorf("could not get panic: %v", err)
break
}
fncall.panicvar.Name = "~panic"
fncall.panicvar.loadValue(callScope.callCtx.retLoadCfg)
if fncall.panicvar.Unreadable != nil {
fncall.err = fmt.Errorf("could not get panic: %v", fncall.panicvar.Unreadable)
break
}
default:
// Got an unknown AX value, this is probably bad but the safest thing
// possible is to ignore it and hope it didn't matter.
fncallLog("unknown value of AX %#x", rax)
}
return false
}
func readTopstackVariable(thread Thread, regs Registers, typename string, loadCfg LoadConfig) (*Variable, error) {
bi := thread.BinInfo()
scope, err := ThreadScope(thread)
if err != nil {
return nil, err
}
typ, err := bi.findType(typename)
if err != nil {
return nil, err
}
v := scope.newVariable("", uintptr(regs.SP()), typ, scope.Mem)
v.loadValue(loadCfg)
if v.Unreadable != nil {
return nil, v.Unreadable
}
return v, nil
}
// fakeEntryScope alters scope to pretend that we are at the entry point of
// fn and CFA and SP are the ones passed as argument.
// This function is used to create a scope for a call frame that doesn't
// exist anymore, to read the return variables of an injected function call,
// or after a stepout command.
func fakeFunctionEntryScope(scope *EvalScope, fn *Function, cfa int64, sp uint64) error {
scope.PC = fn.Entry
scope.Fn = fn
scope.File, scope.Line, _ = scope.BinInfo.PCToLine(fn.Entry)
scope.Regs.CFA = cfa
scope.Regs.Regs[scope.Regs.SPRegNum].Uint64Val = sp
fn.cu.image.dwarfReader.Seek(fn.offset)
e, err := fn.cu.image.dwarfReader.Next()
if err != nil {
return err
}
scope.Regs.FrameBase, _, _, _ = scope.BinInfo.Location(e, dwarf.AttrFrameBase, scope.PC, scope.Regs)
return nil
}
func (fncall *functionCallState) returnValues() []*Variable {
if fncall.panicvar != nil {
return []*Variable{fncall.panicvar}
}
return fncall.retvars
}
// allocString allocates spaces for the contents of v if it needs to be allocated
func (scope *EvalScope) allocString(v *Variable) error {
if v.Base != 0 || v.Len == 0 {
// already allocated
return nil
}
if scope.callCtx == nil {
return errFuncCallNotAllowedStrAlloc
}
savedLoadCfg := scope.callCtx.retLoadCfg
scope.callCtx.retLoadCfg = loadFullValue
defer func() {
scope.callCtx.retLoadCfg = savedLoadCfg
}()
mallocv, err := scope.evalFunctionCall(&ast.CallExpr{
Fun: &ast.SelectorExpr{
X: &ast.Ident{Name: "runtime"},
Sel: &ast.Ident{Name: "mallocgc"},
},
Args: []ast.Expr{
&ast.BasicLit{Kind: token.INT, Value: strconv.Itoa(int(v.Len))},
&ast.Ident{Name: "nil"},
&ast.Ident{Name: "false"},
},
})
if err != nil {
return err
}
if mallocv.Unreadable != nil {
return mallocv.Unreadable
}
if mallocv.DwarfType.String() != "*void" {
return fmt.Errorf("unexpected return type for mallocgc call: %v", mallocv.DwarfType.String())
}
if len(mallocv.Children) != 1 {
return errors.New("internal error, could not interpret return value of mallocgc call")
}
v.Base = uintptr(mallocv.Children[0].Addr)
_, err = scope.Mem.WriteMemory(v.Base, []byte(constant.StringVal(v.Value)))
return err
}
func isCallInjectionStop(loc *Location) bool {
if loc.Fn == nil {
return false
}
return strings.HasPrefix(loc.Fn.Name, debugCallFunctionNamePrefix1) || strings.HasPrefix(loc.Fn.Name, debugCallFunctionNamePrefix2)
}
// callInjectionProtocol is the function called from Continue to progress
// the injection protocol for all threads.
// Returns true if a call injection terminated
func callInjectionProtocol(p Process, threads []Thread) (done bool, err error) {
if len(p.Common().fncallForG) == 0 {
// we aren't injecting any calls, no need to check the threads.
return false, nil
}
for _, thread := range threads {
loc, err := thread.Location()
if err != nil {
continue
}
if !isCallInjectionStop(loc) {
continue
}
g, err := GetG(thread)
if err != nil {
return done, fmt.Errorf("could not determine running goroutine for thread %#x currently executing the function call injection protocol: %v", thread.ThreadID(), err)
}
callinj := p.Common().fncallForG[g.ID]
if callinj == nil || callinj.continueCompleted == nil {
return false, fmt.Errorf("could not recover call injection state for goroutine %d", g.ID)
}
fncallLog("step for injection on goroutine %d thread=%d (location %s)", g.ID, thread.ThreadID(), loc.Fn.Name)
callinj.continueCompleted <- g
contReq, ok := <-callinj.continueRequest
if !contReq.cont {
err := finishEvalExpressionWithCalls(p, g, contReq, ok)
if err != nil {
return done, err
}
done = true
}
}
return done, nil
}