
The step command is changed such that when the function being currently called is a coroutine switch function it will move to the associated coroutine. Functions that switch coroutines are currently the next, stop and yield closures produced by the iter.Pull function.
2646 lines
74 KiB
Go
2646 lines
74 KiB
Go
package proc
|
|
|
|
import (
|
|
"bytes"
|
|
"debug/dwarf"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"go/constant"
|
|
"go/token"
|
|
"math"
|
|
"math/bits"
|
|
"reflect"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
"time"
|
|
"unsafe"
|
|
|
|
"github.com/go-delve/delve/pkg/dwarf/godwarf"
|
|
"github.com/go-delve/delve/pkg/dwarf/op"
|
|
"github.com/go-delve/delve/pkg/goversion"
|
|
"github.com/go-delve/delve/pkg/logflags"
|
|
)
|
|
|
|
const (
|
|
maxErrCount = 3 // Max number of read errors to accept while evaluating slices, arrays and structs
|
|
|
|
maxArrayStridePrefetch = 1024 // Maximum size of array stride for which we will prefetch the array contents
|
|
|
|
// hashTophashEmptyZero is used by map reading code, indicates an empty cell
|
|
hashTophashEmptyZero = 0 // +rtype emptyRest
|
|
// hashTophashEmptyOne is used by map reading code, indicates an empty cell in Go 1.12 and later
|
|
hashTophashEmptyOne = 1 // +rtype emptyOne
|
|
// hashMinTopHashGo111 used by map reading code, indicates minimum value of tophash that isn't empty or evacuated, in Go1.11
|
|
hashMinTopHashGo111 = 4 // +rtype minTopHash
|
|
// hashMinTopHashGo112 is used by map reading code, indicates minimum value of tophash that isn't empty or evacuated, in Go1.12
|
|
hashMinTopHashGo112 = 5 // +rtype minTopHash
|
|
|
|
maxFramePrefetchSize = 1 * 1024 * 1024 // Maximum prefetch size for a stack frame
|
|
|
|
maxMapBucketsFactor = 100 // Maximum numbers of map buckets to read for every requested map entry when loading variables through (*EvalScope).LocalVariables and (*EvalScope).FunctionArguments.
|
|
|
|
maxGoroutineUserCurrentDepth = 30 // Maximum depth used by (*G).UserCurrent to search its location
|
|
)
|
|
|
|
type floatSpecial uint8
|
|
|
|
const (
|
|
// FloatIsNormal means the value is a normal float.
|
|
FloatIsNormal floatSpecial = iota
|
|
// FloatIsNaN means the float is a special NaN value.
|
|
FloatIsNaN
|
|
// FloatIsPosInf means the float is a special positive infinity value.
|
|
FloatIsPosInf
|
|
// FloatIsNegInf means the float is a special negative infinity value.
|
|
FloatIsNegInf
|
|
)
|
|
|
|
type variableFlags uint16
|
|
|
|
const (
|
|
// VariableEscaped is set for local variables that escaped to the heap
|
|
//
|
|
// The compiler performs escape analysis on local variables, the variables
|
|
// that may outlive the stack frame are allocated on the heap instead and
|
|
// only the address is recorded on the stack. These variables will be
|
|
// marked with this flag.
|
|
VariableEscaped variableFlags = (1 << iota)
|
|
// VariableShadowed is set for local variables that are shadowed by a
|
|
// variable with the same name in another scope
|
|
VariableShadowed
|
|
// VariableConstant means this variable is a constant value
|
|
VariableConstant
|
|
// VariableArgument means this variable is a function argument
|
|
VariableArgument
|
|
// VariableReturnArgument means this variable is a function return value
|
|
VariableReturnArgument
|
|
// VariableFakeAddress means the address of this variable is either fake
|
|
// (i.e. the variable is partially or completely stored in a CPU register
|
|
// and doesn't have a real address) or possibly no longer available (because
|
|
// the variable is the return value of a function call and allocated on a
|
|
// frame that no longer exists)
|
|
VariableFakeAddress
|
|
// VariableCPtr means the variable is a C pointer
|
|
VariableCPtr
|
|
// VariableCPURegister means this variable is a CPU register.
|
|
VariableCPURegister
|
|
// variableTrustLen means that when this variable is loaded its length
|
|
// should be trusted and used instead of MaxArrayValues
|
|
variableTrustLen
|
|
)
|
|
|
|
// Variable represents a variable. It contains the address, name,
|
|
// type and other information parsed from both the Dwarf information
|
|
// and the memory of the debugged process.
|
|
// If OnlyAddr is true, the variables value has not been loaded.
|
|
type Variable struct {
|
|
Addr uint64
|
|
OnlyAddr bool
|
|
Name string
|
|
DwarfType godwarf.Type
|
|
RealType godwarf.Type
|
|
Kind reflect.Kind
|
|
mem MemoryReadWriter
|
|
bi *BinaryInfo
|
|
|
|
Value constant.Value
|
|
FloatSpecial floatSpecial
|
|
reg *op.DwarfRegister // contains the value of this variable if VariableCPURegister flag is set and loaded is false
|
|
|
|
Len int64
|
|
Cap int64
|
|
|
|
Flags variableFlags
|
|
|
|
// Base address of arrays, Base address of the backing array for slices (0 for nil slices)
|
|
// Base address of the backing byte array for strings
|
|
// address of the struct backing chan and map variables
|
|
// address of the function entry point for function variables (0 for nil function pointers)
|
|
Base uint64
|
|
stride int64
|
|
fieldType godwarf.Type
|
|
|
|
// closureAddr is the closure address for function variables (0 for non-closures)
|
|
closureAddr uint64
|
|
|
|
// number of elements to skip when loading a map
|
|
mapSkip int
|
|
|
|
// Children lists the variables sub-variables. What constitutes a child
|
|
// depends on the variable's type. For pointers, there's one child
|
|
// representing the pointed-to variable.
|
|
Children []Variable
|
|
|
|
loaded bool
|
|
Unreadable error
|
|
|
|
LocationExpr *locationExpr // location expression
|
|
DeclLine int64 // line number of this variable's declaration
|
|
}
|
|
|
|
// LoadConfig controls how variables are loaded from the targets memory.
|
|
type LoadConfig struct {
|
|
// FollowPointers requests pointers to be automatically dereferenced.
|
|
FollowPointers bool
|
|
// MaxVariableRecurse is how far to recurse when evaluating nested types.
|
|
MaxVariableRecurse int
|
|
// MaxStringLen is the maximum number of bytes read from a string
|
|
MaxStringLen int
|
|
// MaxArrayValues is the maximum number of elements read from an array, a slice or a map.
|
|
MaxArrayValues int
|
|
// MaxStructFields is the maximum number of fields read from a struct, -1 will read all fields.
|
|
MaxStructFields int
|
|
|
|
// MaxMapBuckets is the maximum number of map buckets to read before giving up.
|
|
// A value of 0 will read as many buckets as necessary until the entire map
|
|
// is read or MaxArrayValues is reached.
|
|
//
|
|
// Loading a map is an operation that issues O(num_buckets) operations.
|
|
// Normally the number of buckets is proportional to the number of elements
|
|
// in the map, since the runtime tries to keep the load factor of maps
|
|
// between 40% and 80%.
|
|
//
|
|
// It is possible, however, to create very sparse maps either by:
|
|
// a) adding lots of entries to a map and then deleting most of them, or
|
|
// b) using the make(mapType, N) expression with a very large N
|
|
//
|
|
// When this happens delve will have to scan many empty buckets to find the
|
|
// few entries in the map.
|
|
// MaxMapBuckets can be set to avoid annoying slowdowns␣while reading
|
|
// very sparse maps.
|
|
//
|
|
// Since there is no good way for a user of delve to specify the value of
|
|
// MaxMapBuckets, this field is not actually exposed through the API.
|
|
// Instead (*EvalScope).LocalVariables and (*EvalScope).FunctionArguments
|
|
// set this field automatically to MaxArrayValues * maxMapBucketsFactor.
|
|
// Every other invocation uses the default value of 0, obtaining the old behavior.
|
|
// In practice this means that debuggers using the ListLocalVars or
|
|
// ListFunctionArgs API will not experience a massive slowdown when a very
|
|
// sparse map is in scope, but evaluating a single variable will still work
|
|
// correctly, even if the variable in question is a very sparse map.
|
|
MaxMapBuckets int
|
|
}
|
|
|
|
var loadSingleValue = LoadConfig{false, 0, 64, 0, 0, 0}
|
|
var loadFullValue = LoadConfig{true, 1, 64, 64, -1, 0}
|
|
var loadFullValueLongerStrings = LoadConfig{true, 1, 1024 * 1024, 64, -1, 0}
|
|
|
|
// G status, from: src/runtime/runtime2.go
|
|
const (
|
|
Gidle uint64 = iota // 0
|
|
Grunnable // 1 runnable and on a run queue
|
|
Grunning // 2
|
|
Gsyscall // 3
|
|
Gwaiting // 4
|
|
GmoribundUnused // 5 currently unused, but hardcoded in gdb scripts
|
|
Gdead // 6
|
|
Genqueue // 7 Only the Gscanenqueue is used.
|
|
Gcopystack // 8 in this state when newstack is moving the stack
|
|
)
|
|
|
|
// G represents a runtime G (goroutine) structure (at least the
|
|
// fields that Delve is interested in).
|
|
type G struct {
|
|
ID int64 // Goroutine ID
|
|
PC uint64 // PC of goroutine when it was parked.
|
|
SP uint64 // SP of goroutine when it was parked.
|
|
BP uint64 // BP of goroutine when it was parked (go >= 1.7).
|
|
LR uint64 // LR of goroutine when it was parked.
|
|
GoPC uint64 // PC of 'go' statement that created this goroutine.
|
|
StartPC uint64 // PC of the first function run on this goroutine.
|
|
Status uint64
|
|
stack stack // value of stack
|
|
|
|
WaitSince int64
|
|
WaitReason int64
|
|
|
|
SystemStack bool // SystemStack is true if this goroutine is currently executing on a system stack.
|
|
|
|
// Information on goroutine location
|
|
CurrentLoc Location
|
|
|
|
// Thread that this goroutine is currently allocated to
|
|
Thread Thread
|
|
|
|
variable *Variable
|
|
|
|
Unreadable error // could not read the G struct
|
|
|
|
labels *map[string]string // G's pprof labels, computed on demand in Labels() method
|
|
}
|
|
|
|
// stack represents a stack span in the target process.
|
|
type stack struct {
|
|
hi, lo uint64
|
|
}
|
|
|
|
// GetG returns information on the G (goroutine) that is executing on this thread.
|
|
//
|
|
// The G structure for a thread is stored in thread local storage. Here we simply
|
|
// calculate the address and read and parse the G struct.
|
|
//
|
|
// We cannot simply use the allg linked list in order to find the M that represents
|
|
// the given OS thread and follow its G pointer because on Darwin mach ports are not
|
|
// universal, so our port for this thread would not map to the `id` attribute of the M
|
|
// structure. Also, when linked against libc, Go prefers the libc version of clone as
|
|
// opposed to the runtime version. This has the consequence of not setting M.id for
|
|
// any thread, regardless of OS.
|
|
//
|
|
// In order to get around all this craziness, we read the address of the G structure for
|
|
// the current thread from the thread local storage area.
|
|
func GetG(thread Thread) (*G, error) {
|
|
if thread.Common().g != nil {
|
|
return thread.Common().g, nil
|
|
}
|
|
if loc, _ := thread.Location(); loc != nil && loc.Fn != nil && loc.Fn.Name == "runtime.clone" {
|
|
// When threads are executing runtime.clone the value of TLS is unreliable.
|
|
return nil, nil
|
|
}
|
|
gaddr, err := getGVariable(thread)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
g, err := gaddr.parseG()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if g.ID == 0 {
|
|
// The runtime uses a special goroutine with ID == 0 to mark that the
|
|
// current goroutine is executing on the system stack (sometimes also
|
|
// referred to as the g0 stack or scheduler stack, I'm not sure if there's
|
|
// actually any difference between those).
|
|
// For our purposes it's better if we always return the real goroutine
|
|
// since the rest of the code assumes the goroutine ID is univocal.
|
|
// The real 'current goroutine' is stored in g0.m.curg
|
|
mvar, err := g.variable.structMember("m")
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
curgvar, err := mvar.structMember("curg")
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
g, err = curgvar.parseG()
|
|
if err != nil {
|
|
if _, ok := err.(ErrNoGoroutine); ok {
|
|
err = ErrNoGoroutine{thread.ThreadID()}
|
|
}
|
|
return nil, err
|
|
}
|
|
g.SystemStack = true
|
|
}
|
|
g.Thread = thread
|
|
if loc, err := thread.Location(); err == nil {
|
|
g.CurrentLoc = *loc
|
|
}
|
|
thread.Common().g = g
|
|
return g, nil
|
|
}
|
|
|
|
// GoroutinesInfo searches for goroutines starting at index 'start', and
|
|
// returns an array of up to 'count' (or all found elements, if 'count' is 0)
|
|
// G structures representing the information Delve care about from the internal
|
|
// runtime G structure.
|
|
// GoroutinesInfo also returns the next index to be used as 'start' argument
|
|
// while scanning for all available goroutines, or -1 if there was an error
|
|
// or if the index already reached the last possible value.
|
|
func GoroutinesInfo(dbp *Target, start, count int) ([]*G, int, error) {
|
|
if _, err := dbp.Valid(); err != nil {
|
|
return nil, -1, err
|
|
}
|
|
if dbp.gcache.allGCache != nil {
|
|
// We can't use the cached array to fulfill a subrange request
|
|
if start == 0 && (count == 0 || count >= len(dbp.gcache.allGCache)) {
|
|
return dbp.gcache.allGCache, -1, nil
|
|
}
|
|
}
|
|
|
|
var (
|
|
threadg = map[int64]*G{}
|
|
allg []*G
|
|
)
|
|
|
|
threads := dbp.ThreadList()
|
|
for _, th := range threads {
|
|
g, _ := GetG(th)
|
|
if g != nil {
|
|
threadg[g.ID] = g
|
|
}
|
|
}
|
|
|
|
allgptr, allglen, err := dbp.gcache.getRuntimeAllg(dbp.BinInfo(), dbp.Memory())
|
|
if err != nil {
|
|
return nil, -1, err
|
|
}
|
|
|
|
for i := uint64(start); i < allglen; i++ {
|
|
if count != 0 && len(allg) >= count {
|
|
return allg, int(i), nil
|
|
}
|
|
gvar, err := newGVariable(dbp.CurrentThread(), allgptr+(i*uint64(dbp.BinInfo().Arch.PtrSize())), true)
|
|
if err != nil {
|
|
allg = append(allg, &G{Unreadable: err})
|
|
continue
|
|
}
|
|
g, err := gvar.parseG()
|
|
if err != nil {
|
|
allg = append(allg, &G{Unreadable: err})
|
|
continue
|
|
}
|
|
if thg, allocated := threadg[g.ID]; allocated {
|
|
loc, err := thg.Thread.Location()
|
|
if err != nil {
|
|
return nil, -1, err
|
|
}
|
|
g.Thread = thg.Thread
|
|
// Prefer actual thread location information.
|
|
g.CurrentLoc = *loc
|
|
g.SystemStack = thg.SystemStack
|
|
}
|
|
if g.Status != Gdead {
|
|
allg = append(allg, g)
|
|
}
|
|
dbp.gcache.addGoroutine(g)
|
|
}
|
|
if start == 0 {
|
|
dbp.gcache.allGCache = allg
|
|
}
|
|
|
|
return allg, -1, nil
|
|
}
|
|
|
|
// FindGoroutine returns a G struct representing the goroutine
|
|
// specified by `gid`.
|
|
func FindGoroutine(dbp *Target, gid int64) (*G, error) {
|
|
if selg := dbp.SelectedGoroutine(); (gid == -1) || (selg != nil && selg.ID == gid) || (selg == nil && gid == 0) {
|
|
// Return the currently selected goroutine in the following circumstances:
|
|
//
|
|
// 1. if the caller asks for gid == -1 (because that's what a goroutine ID of -1 means in our API).
|
|
// 2. if gid == selg.ID.
|
|
// this serves two purposes: (a) it's an optimizations that allows us
|
|
// to avoid reading any other goroutine and, more importantly, (b) we
|
|
// could be reading an incorrect value for the goroutine ID of a thread.
|
|
// This condition usually happens when a goroutine calls runtime.clone
|
|
// and for a short period of time two threads will appear to be running
|
|
// the same goroutine.
|
|
// 3. if the caller asks for gid == 0 and the selected goroutine is
|
|
// either 0 or nil.
|
|
// Goroutine 0 is special, it either means we have no current goroutine
|
|
// (for example, running C code), or that we are running on a special
|
|
// stack (system stack, signal handling stack) and we didn't properly
|
|
// detect it.
|
|
// Since there could be multiple goroutines '0' running simultaneously
|
|
// if the user requests it return the one that's already selected or
|
|
// nil if there isn't a selected goroutine.
|
|
return selg, nil
|
|
}
|
|
|
|
if gid == 0 {
|
|
return nil, fmt.Errorf("unknown goroutine %d", gid)
|
|
}
|
|
|
|
if g := dbp.gcache.partialGCache[gid]; g != nil {
|
|
return g, nil
|
|
}
|
|
|
|
// Calling GoroutinesInfo could be slow if there are many goroutines
|
|
// running, check if a running goroutine has been requested first.
|
|
for _, thread := range dbp.ThreadList() {
|
|
g, _ := GetG(thread)
|
|
if g != nil && g.ID == gid {
|
|
return g, nil
|
|
}
|
|
}
|
|
|
|
const goroutinesInfoLimit = 10
|
|
nextg := 0
|
|
for nextg >= 0 {
|
|
var gs []*G
|
|
var err error
|
|
gs, nextg, err = GoroutinesInfo(dbp, nextg, goroutinesInfoLimit)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
for i := range gs {
|
|
if gs[i].ID == gid {
|
|
if gs[i].Unreadable != nil {
|
|
return nil, gs[i].Unreadable
|
|
}
|
|
return gs[i], nil
|
|
}
|
|
}
|
|
}
|
|
|
|
return nil, fmt.Errorf("unknown goroutine %d", gid)
|
|
}
|
|
|
|
func getGVariable(thread Thread) (*Variable, error) {
|
|
regs, err := thread.Registers()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
gaddr, hasgaddr := regs.GAddr()
|
|
if !hasgaddr {
|
|
bi := thread.BinInfo()
|
|
offset, err := bi.GStructOffset(thread.ProcessMemory())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
gaddr, err = readUintRaw(thread.ProcessMemory(), regs.TLS()+offset, int64(bi.Arch.PtrSize()))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
return newGVariable(thread, gaddr, thread.BinInfo().Arch.DerefTLS())
|
|
}
|
|
|
|
func newGVariable(thread Thread, gaddr uint64, deref bool) (*Variable, error) {
|
|
typ, err := thread.BinInfo().findType("runtime.g")
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if deref {
|
|
typ = &godwarf.PtrType{
|
|
CommonType: godwarf.CommonType{
|
|
ByteSize: int64(thread.BinInfo().Arch.PtrSize()),
|
|
Name: "",
|
|
ReflectKind: reflect.Ptr,
|
|
Offset: 0,
|
|
},
|
|
Type: typ,
|
|
}
|
|
}
|
|
|
|
return newVariableFromThread(thread, "", gaddr, typ), nil
|
|
}
|
|
|
|
// Defer returns the top-most defer of the goroutine.
|
|
func (g *G) Defer() *Defer {
|
|
if g.variable.Unreadable != nil {
|
|
return nil
|
|
}
|
|
dvar, _ := g.variable.structMember("_defer")
|
|
if dvar == nil {
|
|
return nil
|
|
}
|
|
dvar = dvar.maybeDereference()
|
|
if dvar.Addr == 0 {
|
|
return nil
|
|
}
|
|
d := &Defer{variable: dvar}
|
|
d.load(true)
|
|
return d
|
|
}
|
|
|
|
// UserCurrent returns the location the users code is at,
|
|
// or was at before entering a runtime function.
|
|
func (g *G) UserCurrent() Location {
|
|
it, err := goroutineStackIterator(nil, g, 0)
|
|
if err != nil {
|
|
return g.CurrentLoc
|
|
}
|
|
for count := 0; it.Next() && count < maxGoroutineUserCurrentDepth; count++ {
|
|
frame := it.Frame()
|
|
if frame.Call.Fn != nil {
|
|
name := frame.Call.Fn.Name
|
|
if strings.Contains(name, ".") && (!strings.HasPrefix(name, "runtime.") || frame.Call.Fn.exportedRuntime()) && !strings.HasPrefix(name, "internal/") && !strings.HasPrefix(name, "runtime/internal") && !strings.HasPrefix(name, "iter.") {
|
|
return frame.Call
|
|
}
|
|
}
|
|
}
|
|
return g.CurrentLoc
|
|
}
|
|
|
|
// Go returns the location of the 'go' statement
|
|
// that spawned this goroutine.
|
|
func (g *G) Go() Location {
|
|
pc := g.GoPC
|
|
if fn := g.variable.bi.PCToFunc(pc); fn != nil {
|
|
// Backup to CALL instruction.
|
|
// Mimics runtime/traceback.go:677.
|
|
if g.GoPC > fn.Entry {
|
|
pc--
|
|
}
|
|
}
|
|
f, l, fn := g.variable.bi.PCToLine(pc)
|
|
return Location{PC: g.GoPC, File: f, Line: l, Fn: fn}
|
|
}
|
|
|
|
// StartLoc returns the starting location of the goroutine.
|
|
func (g *G) StartLoc(tgt *Target) Location {
|
|
fn := g.variable.bi.PCToFunc(g.StartPC)
|
|
fn = tgt.dwrapUnwrap(fn)
|
|
if fn == nil {
|
|
return Location{PC: g.StartPC}
|
|
}
|
|
f, l := tgt.BinInfo().EntryLineForFunc(fn)
|
|
return Location{PC: fn.Entry, File: f, Line: l, Fn: fn}
|
|
}
|
|
|
|
// System returns true if g is a system goroutine. See isSystemGoroutine in
|
|
// $GOROOT/src/runtime/traceback.go.
|
|
func (g *G) System(tgt *Target) bool {
|
|
loc := g.StartLoc(tgt)
|
|
if loc.Fn == nil {
|
|
return false
|
|
}
|
|
switch loc.Fn.Name {
|
|
case "runtime.main", "runtime.handleAsyncEvent":
|
|
return false
|
|
}
|
|
return strings.HasPrefix(loc.Fn.Name, "runtime.")
|
|
}
|
|
|
|
func (g *G) Labels() map[string]string {
|
|
if g.labels != nil {
|
|
return *g.labels
|
|
}
|
|
var labels map[string]string
|
|
if labelsVar := g.variable.loadFieldNamed("labels"); labelsVar != nil && len(labelsVar.Children) == 1 {
|
|
if address := labelsVar.Children[0]; address.Addr != 0 {
|
|
labelMapType, _ := g.variable.bi.findType("runtime/pprof.labelMap")
|
|
if labelMapType != nil {
|
|
labelMap := newVariable("", address.Addr, labelMapType, g.variable.bi, g.variable.mem)
|
|
labelMap.loadValue(loadFullValue)
|
|
labels = map[string]string{}
|
|
for i := range labelMap.Children {
|
|
if i%2 == 0 {
|
|
k := labelMap.Children[i]
|
|
v := labelMap.Children[i+1]
|
|
labels[constant.StringVal(k.Value)] = constant.StringVal(v.Value)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
g.labels = &labels
|
|
return *g.labels
|
|
}
|
|
|
|
type Ancestor struct {
|
|
ID int64 // Goroutine ID
|
|
Unreadable error
|
|
pcsVar *Variable
|
|
}
|
|
|
|
// IsNilErr is returned when a variable is nil.
|
|
type IsNilErr struct {
|
|
name string
|
|
}
|
|
|
|
func (err *IsNilErr) Error() string {
|
|
return fmt.Sprintf("%s is nil", err.name)
|
|
}
|
|
|
|
func globalScope(tgt *Target, bi *BinaryInfo, image *Image, mem MemoryReadWriter) *EvalScope {
|
|
return &EvalScope{Location: Location{}, Regs: op.DwarfRegisters{StaticBase: image.StaticBase}, Mem: mem, g: nil, BinInfo: bi, target: tgt, frameOffset: 0}
|
|
}
|
|
|
|
func newVariableFromThread(t Thread, name string, addr uint64, dwarfType godwarf.Type) *Variable {
|
|
return newVariable(name, addr, dwarfType, t.BinInfo(), t.ProcessMemory())
|
|
}
|
|
|
|
func (v *Variable) newVariable(name string, addr uint64, dwarfType godwarf.Type, mem MemoryReadWriter) *Variable {
|
|
return newVariable(name, addr, dwarfType, v.bi, mem)
|
|
}
|
|
|
|
func newVariable(name string, addr uint64, dwarfType godwarf.Type, bi *BinaryInfo, mem MemoryReadWriter) *Variable {
|
|
if styp, isstruct := dwarfType.(*godwarf.StructType); isstruct && !strings.Contains(styp.Name, "<") && !strings.Contains(styp.Name, "{") {
|
|
// For named structs the compiler will emit a DW_TAG_structure_type entry
|
|
// and a DW_TAG_typedef entry.
|
|
//
|
|
// Normally variables refer to the typedef entry but sometimes global
|
|
// variables will refer to the struct entry incorrectly.
|
|
// Also the runtime type offset resolution (runtimeTypeToDIE) will return
|
|
// the struct entry directly.
|
|
//
|
|
// In both cases we prefer to have a typedef type for consistency's sake.
|
|
//
|
|
// So we wrap all struct types into a fake typedef type except for:
|
|
// a. types not defined by go
|
|
// b. anonymous struct types (they contain the '{' character)
|
|
// c. Go internal struct types used to describe maps (they contain the '<'
|
|
// character).
|
|
cu := bi.Images[dwarfType.Common().Index].findCompileUnitForOffset(dwarfType.Common().Offset)
|
|
if cu != nil && cu.isgo {
|
|
dwarfType = &godwarf.TypedefType{
|
|
CommonType: *(dwarfType.Common()),
|
|
Type: dwarfType,
|
|
}
|
|
}
|
|
}
|
|
|
|
v := &Variable{
|
|
Name: name,
|
|
Addr: addr,
|
|
DwarfType: dwarfType,
|
|
mem: mem,
|
|
bi: bi,
|
|
}
|
|
|
|
v.RealType = resolveTypedef(v.DwarfType)
|
|
|
|
switch t := v.RealType.(type) {
|
|
case *godwarf.PtrType:
|
|
v.Kind = reflect.Ptr
|
|
if _, isvoid := t.Type.(*godwarf.VoidType); isvoid {
|
|
v.Kind = reflect.UnsafePointer
|
|
} else if isCgoType(bi, t) {
|
|
v.Flags |= VariableCPtr
|
|
v.fieldType = t.Type
|
|
v.stride = alignAddr(v.fieldType.Size(), v.fieldType.Align())
|
|
v.Len = 0
|
|
if isCgoCharPtr(bi, t) {
|
|
v.Kind = reflect.String
|
|
}
|
|
if v.Addr != 0 {
|
|
v.Base, v.Unreadable = readUintRaw(v.mem, v.Addr, int64(v.bi.Arch.PtrSize()))
|
|
}
|
|
}
|
|
case *godwarf.ChanType:
|
|
v.Kind = reflect.Chan
|
|
if v.Addr != 0 {
|
|
v.loadChanInfo()
|
|
}
|
|
case *godwarf.MapType:
|
|
v.Kind = reflect.Map
|
|
case *godwarf.StringType:
|
|
v.Kind = reflect.String
|
|
v.stride = 1
|
|
v.fieldType = &godwarf.UintType{BasicType: godwarf.BasicType{CommonType: godwarf.CommonType{ByteSize: 1, Name: "byte", ReflectKind: reflect.Uint8}, BitSize: 8, BitOffset: 0}}
|
|
if v.Addr != 0 {
|
|
v.Base, v.Len, v.Unreadable = readStringInfo(v.mem, v.bi.Arch, v.Addr, t)
|
|
}
|
|
case *godwarf.SliceType:
|
|
v.Kind = reflect.Slice
|
|
if v.Addr != 0 {
|
|
v.loadSliceInfo(t)
|
|
}
|
|
case *godwarf.InterfaceType:
|
|
v.Kind = reflect.Interface
|
|
case *godwarf.StructType:
|
|
v.Kind = reflect.Struct
|
|
case *godwarf.ArrayType:
|
|
v.Kind = reflect.Array
|
|
v.Base = v.Addr
|
|
v.Len = t.Count
|
|
v.Cap = t.Count
|
|
v.fieldType = t.Type
|
|
v.stride = 0
|
|
|
|
if t.Count > 0 {
|
|
v.stride = t.ByteSize / t.Count
|
|
}
|
|
case *godwarf.ComplexType:
|
|
switch t.ByteSize {
|
|
case 8:
|
|
v.Kind = reflect.Complex64
|
|
case 16:
|
|
v.Kind = reflect.Complex128
|
|
}
|
|
case *godwarf.IntType:
|
|
v.Kind = reflect.Int
|
|
case *godwarf.CharType:
|
|
// Rest of the code assumes that Kind == reflect.Int implies RealType ==
|
|
// godwarf.IntType.
|
|
v.RealType = &godwarf.IntType{BasicType: t.BasicType}
|
|
v.Kind = reflect.Int
|
|
case *godwarf.UcharType:
|
|
v.RealType = &godwarf.IntType{BasicType: t.BasicType}
|
|
v.Kind = reflect.Int
|
|
case *godwarf.UintType:
|
|
v.Kind = reflect.Uint
|
|
case *godwarf.FloatType:
|
|
switch t.ByteSize {
|
|
case 4:
|
|
v.Kind = reflect.Float32
|
|
case 8:
|
|
v.Kind = reflect.Float64
|
|
}
|
|
case *godwarf.BoolType:
|
|
v.Kind = reflect.Bool
|
|
case *godwarf.FuncType:
|
|
v.Kind = reflect.Func
|
|
case *godwarf.VoidType:
|
|
v.Kind = reflect.Invalid
|
|
case *godwarf.UnspecifiedType:
|
|
v.Kind = reflect.Invalid
|
|
default:
|
|
v.Unreadable = fmt.Errorf("unknown type: %T", t)
|
|
}
|
|
|
|
return v
|
|
}
|
|
|
|
func resolveTypedef(typ godwarf.Type) godwarf.Type {
|
|
for {
|
|
switch tt := typ.(type) {
|
|
case *godwarf.TypedefType:
|
|
typ = tt.Type
|
|
case *godwarf.QualType:
|
|
typ = tt.Type
|
|
default:
|
|
return typ
|
|
}
|
|
}
|
|
}
|
|
|
|
var constantMaxInt64 = constant.MakeInt64(1<<63 - 1)
|
|
|
|
func newConstant(val constant.Value, mem MemoryReadWriter) *Variable {
|
|
v := &Variable{Value: val, mem: mem, loaded: true}
|
|
switch val.Kind() {
|
|
case constant.Int:
|
|
v.Kind = reflect.Int
|
|
if constant.Sign(val) >= 0 && constant.Compare(val, token.GTR, constantMaxInt64) {
|
|
v.Kind = reflect.Uint64
|
|
}
|
|
case constant.Float:
|
|
v.Kind = reflect.Float64
|
|
case constant.Bool:
|
|
v.Kind = reflect.Bool
|
|
case constant.Complex:
|
|
v.Kind = reflect.Complex128
|
|
case constant.String:
|
|
v.Kind = reflect.String
|
|
v.Len = int64(len(constant.StringVal(val)))
|
|
}
|
|
v.Flags |= VariableConstant
|
|
return v
|
|
}
|
|
|
|
var nilVariable = &Variable{
|
|
Name: "nil",
|
|
Addr: 0,
|
|
Base: 0,
|
|
Kind: reflect.Ptr,
|
|
Children: []Variable{{Addr: 0, OnlyAddr: true}},
|
|
}
|
|
|
|
func (v *Variable) clone() *Variable {
|
|
r := *v
|
|
return &r
|
|
}
|
|
|
|
// TypeString returns the string representation
|
|
// of the type of this variable.
|
|
func (v *Variable) TypeString() string {
|
|
if v == nilVariable {
|
|
return "nil"
|
|
}
|
|
if v.DwarfType == nil {
|
|
return v.Kind.String()
|
|
}
|
|
if v.DwarfType.Common().Name != "" {
|
|
return v.DwarfType.Common().Name
|
|
}
|
|
r := v.DwarfType.String()
|
|
if r == "*void" {
|
|
cu := v.bi.Images[v.DwarfType.Common().Index].findCompileUnitForOffset(v.DwarfType.Common().Offset)
|
|
if cu != nil && cu.isgo {
|
|
r = "unsafe.Pointer"
|
|
}
|
|
}
|
|
return r
|
|
}
|
|
|
|
func (v *Variable) toField(field *godwarf.StructField) (*Variable, error) {
|
|
if v.Unreadable != nil {
|
|
return v.clone(), nil
|
|
}
|
|
if v.Addr == 0 {
|
|
return nil, &IsNilErr{v.Name}
|
|
}
|
|
|
|
name := ""
|
|
if v.Name != "" {
|
|
parts := strings.Split(field.Name, ".")
|
|
if len(parts) > 1 {
|
|
name = fmt.Sprintf("%s.%s", v.Name, parts[1])
|
|
} else {
|
|
name = fmt.Sprintf("%s.%s", v.Name, field.Name)
|
|
}
|
|
}
|
|
return v.newVariable(name, uint64(int64(v.Addr)+field.ByteOffset), field.Type, v.mem), nil
|
|
}
|
|
|
|
// ErrNoGoroutine returned when a G could not be found
|
|
// for a specific thread.
|
|
type ErrNoGoroutine struct {
|
|
tid int
|
|
}
|
|
|
|
func (ng ErrNoGoroutine) Error() string {
|
|
return fmt.Sprintf("no G executing on thread %d", ng.tid)
|
|
}
|
|
|
|
var ErrUnreadableG = errors.New("could not read G struct")
|
|
|
|
func (v *Variable) parseG() (*G, error) {
|
|
mem := v.mem
|
|
gaddr := v.Addr
|
|
_, deref := v.RealType.(*godwarf.PtrType)
|
|
|
|
if deref {
|
|
var err error
|
|
gaddr, err = readUintRaw(mem, gaddr, int64(v.bi.Arch.PtrSize()))
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error derefing *G %s", err)
|
|
}
|
|
}
|
|
if gaddr == 0 {
|
|
id := 0
|
|
if thread, ok := mem.(Thread); ok {
|
|
id = thread.ThreadID()
|
|
}
|
|
return nil, ErrNoGoroutine{tid: id}
|
|
}
|
|
isptr := func(t godwarf.Type) bool {
|
|
_, ok := t.(*godwarf.PtrType)
|
|
return ok
|
|
}
|
|
for isptr(v.RealType) {
|
|
v = v.maybeDereference() // +rtype g
|
|
}
|
|
|
|
v.mem = cacheMemory(v.mem, v.Addr, int(v.RealType.Size()))
|
|
|
|
schedVar := v.loadFieldNamed("sched") // +rtype gobuf
|
|
if schedVar == nil {
|
|
return nil, ErrUnreadableG
|
|
}
|
|
pc, _ := constant.Int64Val(schedVar.fieldVariable("pc").Value) // +rtype uintptr
|
|
sp, _ := constant.Int64Val(schedVar.fieldVariable("sp").Value) // +rtype uintptr
|
|
var bp, lr int64
|
|
if bpvar := schedVar.fieldVariable("bp"); /* +rtype -opt uintptr */ bpvar != nil && bpvar.Value != nil {
|
|
bp, _ = constant.Int64Val(bpvar.Value)
|
|
}
|
|
if lrvar := schedVar.fieldVariable("lr"); /* +rtype -opt uintptr */ lrvar != nil && lrvar.Value != nil {
|
|
lr, _ = constant.Int64Val(lrvar.Value)
|
|
}
|
|
|
|
unreadable := false
|
|
|
|
loadInt64Maybe := func(name string) int64 {
|
|
vv := v.loadFieldNamed(name)
|
|
if vv == nil {
|
|
unreadable = true
|
|
return 0
|
|
}
|
|
n, _ := constant.Int64Val(vv.Value)
|
|
return n
|
|
}
|
|
|
|
loadUint64Maybe := func(name string) uint64 {
|
|
vv := v.loadFieldNamed(name)
|
|
if vv == nil {
|
|
unreadable = true
|
|
return 0
|
|
}
|
|
n, _ := constant.Uint64Val(vv.Value)
|
|
return n
|
|
}
|
|
|
|
id := loadUint64Maybe("goid") // +rtype int64|uint64
|
|
gopc := loadInt64Maybe("gopc") // +rtype uintptr
|
|
startpc := loadInt64Maybe("startpc") // +rtype uintptr
|
|
waitSince := loadInt64Maybe("waitsince") // +rtype int64
|
|
waitReason := int64(0)
|
|
if producer := v.bi.Producer(); producer != "" && goversion.ProducerAfterOrEqual(producer, 1, 11) {
|
|
waitReason = loadInt64Maybe("waitreason") // +rtype -opt waitReason
|
|
}
|
|
var stackhi, stacklo uint64
|
|
if stackVar := v.loadFieldNamed("stack"); /* +rtype stack */ stackVar != nil {
|
|
if stackhiVar := stackVar.fieldVariable("hi"); /* +rtype uintptr */ stackhiVar != nil && stackhiVar.Value != nil {
|
|
stackhi, _ = constant.Uint64Val(stackhiVar.Value)
|
|
} else {
|
|
unreadable = true
|
|
}
|
|
if stackloVar := stackVar.fieldVariable("lo"); /* +rtype uintptr */ stackloVar != nil && stackloVar.Value != nil {
|
|
stacklo, _ = constant.Uint64Val(stackloVar.Value)
|
|
} else {
|
|
unreadable = true
|
|
}
|
|
}
|
|
|
|
status := uint64(0)
|
|
if atomicStatus := v.loadFieldNamed("atomicstatus"); /* +rtype uint32|runtime/internal/atomic.Uint32|internal/runtime/atomic.Uint32 */ atomicStatus != nil {
|
|
if constant.Val(atomicStatus.Value) != nil {
|
|
status, _ = constant.Uint64Val(atomicStatus.Value)
|
|
} else {
|
|
atomicStatus := atomicStatus // +rtype runtime/internal/atomic.Uint32|internal/runtime/atomic.Uint32
|
|
vv := atomicStatus.fieldVariable("value") // +rtype uint32
|
|
if vv == nil {
|
|
unreadable = true
|
|
} else {
|
|
status, _ = constant.Uint64Val(vv.Value)
|
|
}
|
|
}
|
|
} else {
|
|
unreadable = true
|
|
}
|
|
|
|
if unreadable {
|
|
return nil, ErrUnreadableG
|
|
}
|
|
|
|
f, l, fn := v.bi.PCToLine(uint64(pc))
|
|
|
|
v.Name = "runtime.curg"
|
|
|
|
g := &G{
|
|
ID: int64(id),
|
|
GoPC: uint64(gopc),
|
|
StartPC: uint64(startpc),
|
|
PC: uint64(pc),
|
|
SP: uint64(sp),
|
|
BP: uint64(bp),
|
|
LR: uint64(lr),
|
|
Status: status,
|
|
WaitSince: waitSince,
|
|
WaitReason: waitReason,
|
|
CurrentLoc: Location{PC: uint64(pc), File: f, Line: l, Fn: fn},
|
|
variable: v,
|
|
stack: stack{hi: stackhi, lo: stacklo},
|
|
}
|
|
return g, nil
|
|
}
|
|
|
|
func (v *Variable) loadFieldNamed(name string) *Variable {
|
|
v, err := v.structMember(name)
|
|
if err != nil {
|
|
return nil
|
|
}
|
|
v.loadValue(loadFullValue)
|
|
if v.Unreadable != nil {
|
|
return nil
|
|
}
|
|
return v
|
|
}
|
|
|
|
func (v *Variable) fieldVariable(name string) *Variable {
|
|
if !v.loaded {
|
|
panic("fieldVariable called on a variable that wasn't loaded")
|
|
}
|
|
for i := range v.Children {
|
|
if child := &v.Children[i]; child.Name == name {
|
|
return child
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
var errTracebackAncestorsDisabled = errors.New("tracebackancestors is disabled")
|
|
|
|
// Ancestors returns the list of ancestors for g.
|
|
func Ancestors(p *Target, g *G, n int) ([]Ancestor, error) {
|
|
scope := globalScope(p, p.BinInfo(), p.BinInfo().Images[0], p.Memory())
|
|
tbav, err := scope.EvalExpression("runtime.debug.tracebackancestors", loadSingleValue)
|
|
if err == nil && tbav.Unreadable == nil && tbav.Kind == reflect.Int {
|
|
tba, _ := constant.Int64Val(tbav.Value)
|
|
if tba == 0 {
|
|
return nil, errTracebackAncestorsDisabled
|
|
}
|
|
}
|
|
|
|
av, err := g.variable.structMember("ancestors")
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
av = av.maybeDereference()
|
|
av.loadValue(LoadConfig{MaxArrayValues: n, MaxVariableRecurse: 1, MaxStructFields: -1})
|
|
if av.Unreadable != nil {
|
|
return nil, err
|
|
}
|
|
if av.Addr == 0 {
|
|
// no ancestors
|
|
return nil, nil
|
|
}
|
|
|
|
r := make([]Ancestor, len(av.Children))
|
|
|
|
for i := range av.Children {
|
|
if av.Children[i].Unreadable != nil {
|
|
r[i].Unreadable = av.Children[i].Unreadable
|
|
continue
|
|
}
|
|
goidv := av.Children[i].fieldVariable("goid")
|
|
if goidv.Unreadable != nil {
|
|
r[i].Unreadable = goidv.Unreadable
|
|
continue
|
|
}
|
|
r[i].ID, _ = constant.Int64Val(goidv.Value)
|
|
pcsVar := av.Children[i].fieldVariable("pcs")
|
|
if pcsVar.Unreadable != nil {
|
|
r[i].Unreadable = pcsVar.Unreadable
|
|
}
|
|
pcsVar.loaded = false
|
|
pcsVar.Children = pcsVar.Children[:0]
|
|
r[i].pcsVar = pcsVar
|
|
}
|
|
|
|
return r, nil
|
|
}
|
|
|
|
// Stack returns the stack trace of ancestor 'a' as saved by the runtime.
|
|
func (a *Ancestor) Stack(n int) ([]Stackframe, error) {
|
|
if a.Unreadable != nil {
|
|
return nil, a.Unreadable
|
|
}
|
|
pcsVar := a.pcsVar.clone()
|
|
pcsVar.loadValue(LoadConfig{MaxArrayValues: n})
|
|
if pcsVar.Unreadable != nil {
|
|
return nil, pcsVar.Unreadable
|
|
}
|
|
r := make([]Stackframe, len(pcsVar.Children))
|
|
for i := range pcsVar.Children {
|
|
if pcsVar.Children[i].Unreadable != nil {
|
|
r[i] = Stackframe{Err: pcsVar.Children[i].Unreadable}
|
|
continue
|
|
}
|
|
if pcsVar.Children[i].Kind != reflect.Uint {
|
|
return nil, fmt.Errorf("wrong type for pcs item %d: %v", i, pcsVar.Children[i].Kind)
|
|
}
|
|
pc, _ := constant.Int64Val(pcsVar.Children[i].Value)
|
|
fn := a.pcsVar.bi.PCToFunc(uint64(pc))
|
|
if fn == nil {
|
|
loc := Location{PC: uint64(pc)}
|
|
r[i] = Stackframe{Current: loc, Call: loc}
|
|
continue
|
|
}
|
|
pc2 := uint64(pc)
|
|
if pc2-1 >= fn.Entry {
|
|
pc2--
|
|
}
|
|
f, ln := fn.cu.lineInfo.PCToLine(fn.Entry, pc2)
|
|
loc := Location{PC: uint64(pc), File: f, Line: ln, Fn: fn}
|
|
r[i] = Stackframe{Current: loc, Call: loc}
|
|
}
|
|
r[len(r)-1].Bottom = pcsVar.Len == int64(len(pcsVar.Children))
|
|
return r, nil
|
|
}
|
|
|
|
func (v *Variable) structMember(memberName string) (*Variable, error) {
|
|
if v.Unreadable != nil {
|
|
return v.clone(), nil
|
|
}
|
|
vname := v.Name
|
|
if v.loaded && (v.Flags&VariableFakeAddress) != 0 {
|
|
for i := range v.Children {
|
|
if v.Children[i].Name == memberName {
|
|
return &v.Children[i], nil
|
|
}
|
|
}
|
|
return nil, fmt.Errorf("%s has no member %s", vname, memberName)
|
|
}
|
|
switch v.Kind {
|
|
case reflect.Chan:
|
|
v = v.clone()
|
|
v.RealType = resolveTypedef(&(v.RealType.(*godwarf.ChanType).TypedefType))
|
|
case reflect.Interface:
|
|
v.loadInterface(0, false, LoadConfig{})
|
|
if len(v.Children) > 0 {
|
|
v = &v.Children[0]
|
|
}
|
|
}
|
|
|
|
queue := []*Variable{v}
|
|
seen := map[string]struct{}{} // prevent infinite loops
|
|
first := true
|
|
|
|
for len(queue) > 0 {
|
|
v := queue[0]
|
|
queue = append(queue[:0], queue[1:]...)
|
|
if _, isseen := seen[v.RealType.String()]; isseen {
|
|
continue
|
|
}
|
|
seen[v.RealType.String()] = struct{}{}
|
|
|
|
structVar := v.maybeDereference()
|
|
structVar.Name = v.Name
|
|
if structVar.Unreadable != nil {
|
|
return structVar, nil
|
|
}
|
|
|
|
switch t := structVar.RealType.(type) {
|
|
case *godwarf.StructType:
|
|
for _, field := range t.Field {
|
|
if field.Name == memberName {
|
|
return structVar.toField(field)
|
|
}
|
|
isEmbeddedStructMember :=
|
|
field.Embedded ||
|
|
(field.Type.Common().Name == field.Name) ||
|
|
(len(field.Name) > 1 &&
|
|
field.Name[0] == '*' &&
|
|
field.Type.Common().Name[1:] == field.Name[1:])
|
|
if !isEmbeddedStructMember {
|
|
continue
|
|
}
|
|
embeddedVar, err := structVar.toField(field)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// Check for embedded field referenced by type name
|
|
parts := strings.Split(field.Name, ".")
|
|
if len(parts) > 1 && parts[1] == memberName {
|
|
return embeddedVar, nil
|
|
}
|
|
embeddedVar.Name = structVar.Name
|
|
queue = append(queue, embeddedVar)
|
|
}
|
|
default:
|
|
if first {
|
|
return nil, fmt.Errorf("%s (type %s) is not a struct", vname, structVar.TypeString())
|
|
}
|
|
}
|
|
first = false
|
|
}
|
|
|
|
return nil, fmt.Errorf("%s has no member %s", vname, memberName)
|
|
}
|
|
|
|
func readVarEntry(entry *godwarf.Tree, image *Image) (name string, typ godwarf.Type, err error) {
|
|
name, ok := entry.Val(dwarf.AttrName).(string)
|
|
if !ok {
|
|
return "", nil, errors.New("malformed variable DIE (name)")
|
|
}
|
|
|
|
typ, err = entry.Type(image.dwarf, image.index, image.typeCache)
|
|
if err != nil {
|
|
return "", nil, err
|
|
}
|
|
|
|
return name, typ, nil
|
|
}
|
|
|
|
// Extracts the name and type of a variable from a dwarf entry
|
|
// then executes the instructions given in the DW_AT_location attribute to grab the variable's address
|
|
func extractVarInfoFromEntry(tgt *Target, bi *BinaryInfo, image *Image, regs op.DwarfRegisters, mem MemoryReadWriter, entry *godwarf.Tree, dictAddr uint64) (*Variable, error) {
|
|
if entry.Tag != dwarf.TagFormalParameter && entry.Tag != dwarf.TagVariable {
|
|
return nil, fmt.Errorf("invalid entry tag, only supports FormalParameter and Variable, got %s", entry.Tag.String())
|
|
}
|
|
|
|
n, t, err := readVarEntry(entry, image)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
t, err = resolveParametricType(bi, mem, t, dictAddr)
|
|
if err != nil {
|
|
// Log the error, keep going with t, which will be the shape type
|
|
logflags.DebuggerLogger().Errorf("could not resolve parametric type of %s: %v", n, err)
|
|
}
|
|
|
|
addr, pieces, descr, err := bi.Location(entry, dwarf.AttrLocation, regs.PC(), regs, mem)
|
|
if pieces != nil {
|
|
var cmem *compositeMemory
|
|
if tgt != nil {
|
|
addr, cmem, err = tgt.newCompositeMemory(mem, regs, pieces, descr, t.Common().ByteSize)
|
|
} else {
|
|
cmem, err = newCompositeMemory(mem, bi.Arch, regs, pieces, t.Common().ByteSize)
|
|
if cmem != nil {
|
|
cmem.base = fakeAddressUnresolv
|
|
addr = int64(cmem.base)
|
|
}
|
|
}
|
|
if cmem != nil {
|
|
mem = cmem
|
|
}
|
|
}
|
|
|
|
v := newVariable(n, uint64(addr), t, bi, mem)
|
|
if pieces != nil {
|
|
v.Flags |= VariableFakeAddress
|
|
}
|
|
v.LocationExpr = descr
|
|
v.DeclLine, _ = entry.Val(dwarf.AttrDeclLine).(int64)
|
|
if err != nil {
|
|
v.Unreadable = err
|
|
}
|
|
return v, nil
|
|
}
|
|
|
|
// If v is a pointer a new variable is returned containing the value pointed by v.
|
|
func (v *Variable) maybeDereference() *Variable {
|
|
if v.Unreadable != nil {
|
|
return v
|
|
}
|
|
|
|
switch t := v.RealType.(type) {
|
|
case *godwarf.PtrType:
|
|
if v.Addr == 0 && len(v.Children) == 1 && v.loaded {
|
|
// fake pointer variable constructed by casting an integer to a pointer type
|
|
return &v.Children[0]
|
|
}
|
|
ptrval, err := readUintRaw(v.mem, v.Addr, t.ByteSize)
|
|
r := v.newVariable("", ptrval, t.Type, DereferenceMemory(v.mem))
|
|
if err != nil {
|
|
r.Unreadable = err
|
|
}
|
|
|
|
return r
|
|
default:
|
|
return v
|
|
}
|
|
}
|
|
|
|
// loadPtr assumes that v is a pointer and loads its value. v also gets a child
|
|
// variable, representing the pointed-to value. If v is already loaded,
|
|
// loadPtr() is a no-op.
|
|
func (v *Variable) loadPtr() {
|
|
if len(v.Children) > 0 {
|
|
// We've already loaded this variable.
|
|
return
|
|
}
|
|
|
|
t := v.RealType.(*godwarf.PtrType)
|
|
v.Len = 1
|
|
|
|
var child *Variable
|
|
if v.Unreadable == nil {
|
|
ptrval, err := readUintRaw(v.mem, v.Addr, t.ByteSize)
|
|
if err == nil {
|
|
child = v.newVariable("", ptrval, t.Type, DereferenceMemory(v.mem))
|
|
} else {
|
|
// We failed to read the pointer value; mark v as unreadable.
|
|
v.Unreadable = err
|
|
}
|
|
}
|
|
|
|
if v.Unreadable != nil {
|
|
// Pointers get a child even if their value can't be read, to
|
|
// maintain backwards compatibility.
|
|
child = v.newVariable("", 0 /* addr */, t.Type, DereferenceMemory(v.mem))
|
|
child.Unreadable = fmt.Errorf("parent pointer unreadable: %w", v.Unreadable)
|
|
}
|
|
|
|
v.Children = []Variable{*child}
|
|
v.Value = constant.MakeUint64(v.Children[0].Addr)
|
|
}
|
|
|
|
func loadValues(vars []*Variable, cfg LoadConfig) {
|
|
for i := range vars {
|
|
vars[i].loadValueInternal(0, cfg)
|
|
}
|
|
}
|
|
|
|
// Extracts the value of the variable at the given address.
|
|
func (v *Variable) loadValue(cfg LoadConfig) {
|
|
v.loadValueInternal(0, cfg)
|
|
}
|
|
|
|
func (v *Variable) loadValueInternal(recurseLevel int, cfg LoadConfig) {
|
|
if v.Unreadable != nil || v.loaded || (v.Addr == 0 && v.Base == 0) {
|
|
return
|
|
}
|
|
|
|
v.loaded = true
|
|
switch v.Kind {
|
|
case reflect.Ptr, reflect.UnsafePointer:
|
|
v.loadPtr()
|
|
if cfg.FollowPointers {
|
|
// Don't increase the recursion level when dereferencing pointers
|
|
// unless this is a pointer to interface (which could cause an infinite loop)
|
|
nextLvl := recurseLevel
|
|
checkLvl := false
|
|
if v.Children[0].Kind == reflect.Interface {
|
|
nextLvl++
|
|
} else if ptyp, isptr := v.RealType.(*godwarf.PtrType); isptr {
|
|
_, elemTypIsPtr := resolveTypedef(ptyp.Type).(*godwarf.PtrType)
|
|
if elemTypIsPtr {
|
|
nextLvl++
|
|
checkLvl = true
|
|
}
|
|
}
|
|
if checkLvl && recurseLevel > cfg.MaxVariableRecurse {
|
|
v.Children[0].OnlyAddr = true
|
|
} else {
|
|
v.Children[0].loadValueInternal(nextLvl, cfg)
|
|
}
|
|
} else {
|
|
v.Children[0].OnlyAddr = true
|
|
}
|
|
|
|
case reflect.Chan:
|
|
sv := v.clone()
|
|
sv.RealType = resolveTypedef(&(sv.RealType.(*godwarf.ChanType).TypedefType))
|
|
sv = sv.maybeDereference()
|
|
sv.loadValueInternal(0, loadFullValue)
|
|
v.Children = sv.Children
|
|
v.Len = sv.Len
|
|
v.Base = sv.Addr
|
|
|
|
case reflect.Map:
|
|
if recurseLevel <= cfg.MaxVariableRecurse {
|
|
v.loadMap(recurseLevel, cfg)
|
|
} else {
|
|
// loads length so that the client knows that the map isn't empty
|
|
v.mapIterator()
|
|
}
|
|
|
|
case reflect.String:
|
|
var val string
|
|
switch {
|
|
case v.Flags&VariableCPtr != 0:
|
|
var done bool
|
|
val, done, v.Unreadable = readCStringValue(DereferenceMemory(v.mem), v.Base, cfg)
|
|
if v.Unreadable == nil {
|
|
v.Len = int64(len(val))
|
|
if !done {
|
|
v.Len++
|
|
}
|
|
}
|
|
|
|
case v.Flags&VariableCPURegister != 0:
|
|
val = fmt.Sprintf("%x", v.reg.Bytes)
|
|
s := v.Base - fakeAddressUnresolv
|
|
if s < uint64(len(val)) {
|
|
val = val[s:]
|
|
if v.Len >= 0 && v.Len < int64(len(val)) {
|
|
val = val[:v.Len]
|
|
}
|
|
}
|
|
|
|
default:
|
|
val, v.Unreadable = readStringValue(DereferenceMemory(v.mem), v.Base, v.Len, cfg)
|
|
}
|
|
v.Value = constant.MakeString(val)
|
|
|
|
case reflect.Slice, reflect.Array:
|
|
v.loadArrayValues(recurseLevel, cfg)
|
|
|
|
case reflect.Struct:
|
|
v.mem = cacheMemory(v.mem, v.Addr, int(v.RealType.Size()))
|
|
t := v.RealType.(*godwarf.StructType)
|
|
v.Len = int64(len(t.Field))
|
|
// Recursively call extractValue to grab
|
|
// the value of all the members of the struct.
|
|
if recurseLevel <= cfg.MaxVariableRecurse {
|
|
v.Children = make([]Variable, 0, len(t.Field))
|
|
for i, field := range t.Field {
|
|
if cfg.MaxStructFields >= 0 && len(v.Children) >= cfg.MaxStructFields {
|
|
break
|
|
}
|
|
f, _ := v.toField(field)
|
|
f.Name = field.Name
|
|
if t.StructName == "" && len(f.Name) > 0 && f.Name[0] == '&' && f.Kind == reflect.Ptr {
|
|
// This struct is a closure struct and the field is actually a variable
|
|
// captured by reference.
|
|
f = f.maybeDereference()
|
|
f.Flags |= VariableEscaped
|
|
f.Name = field.Name[1:]
|
|
}
|
|
v.Children = append(v.Children, *f)
|
|
v.Children[i].loadValueInternal(recurseLevel+1, cfg)
|
|
}
|
|
}
|
|
if t.Name == "time.Time" {
|
|
v.formatTime()
|
|
}
|
|
|
|
case reflect.Interface:
|
|
v.loadInterface(recurseLevel, true, cfg)
|
|
|
|
case reflect.Complex64, reflect.Complex128:
|
|
v.readComplex(v.RealType.(*godwarf.ComplexType).ByteSize)
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
var val int64
|
|
val, v.Unreadable = readIntRaw(v.mem, v.Addr, v.RealType.(*godwarf.IntType).ByteSize)
|
|
v.Value = constant.MakeInt64(val)
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
if v.Flags&VariableCPURegister != 0 {
|
|
v.Value = constant.MakeUint64(v.reg.Uint64Val)
|
|
} else {
|
|
var val uint64
|
|
val, v.Unreadable = readUintRaw(v.mem, v.Addr, v.RealType.(*godwarf.UintType).ByteSize)
|
|
v.Value = constant.MakeUint64(val)
|
|
}
|
|
case reflect.Bool:
|
|
val := make([]byte, 1)
|
|
_, err := v.mem.ReadMemory(val, v.Addr)
|
|
v.Unreadable = err
|
|
if err == nil {
|
|
v.Value = constant.MakeBool(val[0] != 0)
|
|
}
|
|
case reflect.Float32, reflect.Float64:
|
|
var val float64
|
|
val, v.Unreadable = v.readFloatRaw(v.RealType.(*godwarf.FloatType).ByteSize)
|
|
v.Value = constant.MakeFloat64(val)
|
|
switch {
|
|
case math.IsInf(val, +1):
|
|
v.FloatSpecial = FloatIsPosInf
|
|
case math.IsInf(val, -1):
|
|
v.FloatSpecial = FloatIsNegInf
|
|
case math.IsNaN(val):
|
|
v.FloatSpecial = FloatIsNaN
|
|
}
|
|
case reflect.Func:
|
|
v.loadFunctionPtr(recurseLevel, cfg)
|
|
default:
|
|
v.Unreadable = fmt.Errorf("unknown or unsupported kind: %q", v.Kind.String())
|
|
}
|
|
}
|
|
|
|
// convertToEface converts srcv into an "interface {}" and writes it to
|
|
// dstv.
|
|
// Dstv must be a variable of type "interface {}" and srcv must either be an
|
|
// interface or a pointer shaped variable (map, channel, pointer or struct
|
|
// containing a single pointer)
|
|
func convertToEface(srcv, dstv *Variable) error {
|
|
if dstv.RealType.String() != "interface {}" {
|
|
return &typeConvErr{srcv.DwarfType, dstv.RealType}
|
|
}
|
|
if _, isiface := srcv.RealType.(*godwarf.InterfaceType); isiface {
|
|
// iface -> eface conversion
|
|
_type, data, _ := srcv.readInterface()
|
|
if srcv.Unreadable != nil {
|
|
return srcv.Unreadable
|
|
}
|
|
_type = _type.maybeDereference()
|
|
dstv.writeEmptyInterface(_type.Addr, data)
|
|
return nil
|
|
}
|
|
typeAddr, typeKind, runtimeTypeFound, err := dwarfToRuntimeType(srcv.bi, srcv.mem, srcv.RealType)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if !runtimeTypeFound || typeKind&kindDirectIface == 0 {
|
|
return &typeConvErr{srcv.DwarfType, dstv.RealType}
|
|
}
|
|
return dstv.writeEmptyInterface(typeAddr, srcv)
|
|
}
|
|
|
|
func readStringInfo(mem MemoryReadWriter, arch *Arch, addr uint64, typ *godwarf.StringType) (uint64, int64, error) {
|
|
// string data structure is always two ptrs in size. Addr, followed by len
|
|
// https://research.swtch.com/godata
|
|
|
|
mem = cacheMemory(mem, addr, arch.PtrSize()*2)
|
|
|
|
var strlen int64
|
|
var outaddr uint64
|
|
var err error
|
|
|
|
for _, field := range typ.StructType.Field {
|
|
switch field.Name {
|
|
case "len":
|
|
strlen, err = readIntRaw(mem, addr+uint64(field.ByteOffset), int64(arch.PtrSize()))
|
|
if err != nil {
|
|
return 0, 0, fmt.Errorf("could not read string len %s", err)
|
|
}
|
|
if strlen < 0 {
|
|
return 0, 0, fmt.Errorf("invalid length: %d", strlen)
|
|
}
|
|
case "str":
|
|
outaddr, err = readUintRaw(mem, addr+uint64(field.ByteOffset), int64(arch.PtrSize()))
|
|
if err != nil {
|
|
return 0, 0, fmt.Errorf("could not read string pointer %s", err)
|
|
}
|
|
if addr == 0 {
|
|
return 0, 0, nil
|
|
}
|
|
}
|
|
}
|
|
|
|
return outaddr, strlen, nil
|
|
}
|
|
|
|
func readStringValue(mem MemoryReadWriter, addr uint64, strlen int64, cfg LoadConfig) (string, error) {
|
|
if strlen == 0 {
|
|
return "", nil
|
|
}
|
|
|
|
count := strlen
|
|
if count > int64(cfg.MaxStringLen) {
|
|
count = int64(cfg.MaxStringLen)
|
|
}
|
|
|
|
val := make([]byte, int(count))
|
|
_, err := mem.ReadMemory(val, addr)
|
|
if err != nil {
|
|
return "", fmt.Errorf("could not read string at %#v due to %s", addr, err)
|
|
}
|
|
|
|
return string(val), nil
|
|
}
|
|
|
|
func readCStringValue(mem MemoryReadWriter, addr uint64, cfg LoadConfig) (string, bool, error) {
|
|
buf := make([]byte, cfg.MaxStringLen) //
|
|
val := buf[:0] // part of the string we've already read
|
|
|
|
for len(buf) > 0 {
|
|
// Reads some memory for the string but (a) never more than we would
|
|
// need (considering cfg.MaxStringLen), and (b) never cross a page boundary
|
|
// until we're sure we have to.
|
|
// The page check is needed to avoid getting an I/O error for reading
|
|
// memory we don't even need.
|
|
// We don't know how big a page is but 1024 is a reasonable minimum common
|
|
// divisor for all architectures.
|
|
curaddr := addr + uint64(len(val))
|
|
maxsize := int(alignAddr(int64(curaddr+1), 1024) - int64(curaddr))
|
|
size := len(buf)
|
|
if size > maxsize {
|
|
size = maxsize
|
|
}
|
|
|
|
_, err := mem.ReadMemory(buf[:size], curaddr)
|
|
if err != nil {
|
|
return "", false, fmt.Errorf("could not read string at %#v due to %s", addr, err)
|
|
}
|
|
|
|
done := false
|
|
for i := 0; i < size; i++ {
|
|
if buf[i] == 0 {
|
|
done = true
|
|
size = i
|
|
break
|
|
}
|
|
}
|
|
|
|
val = val[:len(val)+size]
|
|
buf = buf[size:]
|
|
if done {
|
|
return string(val), true, nil
|
|
}
|
|
}
|
|
|
|
return string(val), false, nil
|
|
}
|
|
|
|
const (
|
|
sliceArrayFieldName = "array"
|
|
sliceLenFieldName = "len"
|
|
sliceCapFieldName = "cap"
|
|
)
|
|
|
|
func (v *Variable) loadSliceInfo(t *godwarf.SliceType) {
|
|
v.mem = cacheMemory(v.mem, v.Addr, int(t.Size()))
|
|
|
|
var err error
|
|
for _, f := range t.Field {
|
|
switch f.Name {
|
|
case sliceArrayFieldName:
|
|
var base uint64
|
|
base, err = readUintRaw(v.mem, uint64(int64(v.Addr)+f.ByteOffset), f.Type.Size())
|
|
if err == nil {
|
|
v.Base = base
|
|
// Dereference array type to get value type
|
|
ptrType, ok := f.Type.(*godwarf.PtrType)
|
|
if !ok {
|
|
//lint:ignore ST1005 backwards compatibility
|
|
v.Unreadable = fmt.Errorf("Invalid type %s in slice array", f.Type)
|
|
return
|
|
}
|
|
v.fieldType = ptrType.Type
|
|
}
|
|
case sliceLenFieldName:
|
|
lstrAddr, _ := v.toField(f)
|
|
lstrAddr.loadValue(loadSingleValue)
|
|
err = lstrAddr.Unreadable
|
|
if err == nil {
|
|
v.Len, _ = constant.Int64Val(lstrAddr.Value)
|
|
}
|
|
case sliceCapFieldName:
|
|
cstrAddr, _ := v.toField(f)
|
|
cstrAddr.loadValue(loadSingleValue)
|
|
err = cstrAddr.Unreadable
|
|
if err == nil {
|
|
v.Cap, _ = constant.Int64Val(cstrAddr.Value)
|
|
}
|
|
}
|
|
if err != nil {
|
|
v.Unreadable = err
|
|
return
|
|
}
|
|
}
|
|
|
|
v.stride = v.fieldType.Size()
|
|
if t, ok := v.fieldType.(*godwarf.PtrType); ok {
|
|
v.stride = t.ByteSize
|
|
}
|
|
}
|
|
|
|
// loadChanInfo loads the buffer size of the channel and changes the type of
|
|
// the buf field from unsafe.Pointer to an array of the correct type.
|
|
func (v *Variable) loadChanInfo() {
|
|
chanType, ok := v.RealType.(*godwarf.ChanType)
|
|
if !ok {
|
|
v.Unreadable = errors.New("bad channel type")
|
|
return
|
|
}
|
|
sv := v.clone()
|
|
sv.RealType = resolveTypedef(&(chanType.TypedefType))
|
|
sv = sv.maybeDereference()
|
|
if sv.Unreadable != nil || sv.Addr == 0 {
|
|
return
|
|
}
|
|
v.Base = sv.Addr
|
|
structType, ok := sv.DwarfType.(*godwarf.StructType)
|
|
if !ok {
|
|
v.Unreadable = errors.New("bad channel type")
|
|
return
|
|
}
|
|
|
|
lenAddr, _ := sv.toField(structType.Field[1])
|
|
lenAddr.loadValue(loadSingleValue)
|
|
if lenAddr.Unreadable != nil {
|
|
v.Unreadable = fmt.Errorf("unreadable length: %v", lenAddr.Unreadable)
|
|
return
|
|
}
|
|
chanLen, _ := constant.Uint64Val(lenAddr.Value)
|
|
|
|
newStructType := &godwarf.StructType{}
|
|
*newStructType = *structType
|
|
newStructType.Field = make([]*godwarf.StructField, len(structType.Field))
|
|
|
|
for i := range structType.Field {
|
|
field := &godwarf.StructField{}
|
|
*field = *structType.Field[i]
|
|
if field.Name == "buf" {
|
|
field.Type = pointerTo(fakeArrayType(chanLen, chanType.ElemType), v.bi.Arch)
|
|
}
|
|
newStructType.Field[i] = field
|
|
}
|
|
|
|
v.RealType = &godwarf.ChanType{
|
|
TypedefType: godwarf.TypedefType{
|
|
CommonType: chanType.TypedefType.CommonType,
|
|
Type: pointerTo(newStructType, v.bi.Arch),
|
|
},
|
|
ElemType: chanType.ElemType,
|
|
}
|
|
}
|
|
|
|
func (v *Variable) loadArrayValues(recurseLevel int, cfg LoadConfig) {
|
|
if v.Unreadable != nil {
|
|
return
|
|
}
|
|
if v.Len < 0 {
|
|
//lint:ignore ST1005 backwards compatibility
|
|
v.Unreadable = errors.New("Negative array length")
|
|
return
|
|
}
|
|
if v.Base == 0 && v.Len > 0 {
|
|
v.Unreadable = errors.New("non-zero length array with nil base")
|
|
return
|
|
}
|
|
|
|
count := v.Len
|
|
// Cap number of elements
|
|
if (v.Flags&variableTrustLen == 0) && (count > int64(cfg.MaxArrayValues)) {
|
|
count = int64(cfg.MaxArrayValues)
|
|
}
|
|
if v.Base+uint64(v.stride*count) < v.Base {
|
|
v.Unreadable = fmt.Errorf("bad array base address %#x", v.Base)
|
|
}
|
|
|
|
if v.stride < maxArrayStridePrefetch {
|
|
v.mem = cacheMemory(v.mem, v.Base, int(v.stride*count))
|
|
}
|
|
|
|
errcount := 0
|
|
|
|
mem := v.mem
|
|
if v.Kind != reflect.Array {
|
|
mem = DereferenceMemory(mem)
|
|
}
|
|
|
|
for i := int64(0); i < count; i++ {
|
|
fieldvar := v.newVariable("", uint64(int64(v.Base)+(i*v.stride)), v.fieldType, mem)
|
|
fieldvar.loadValueInternal(recurseLevel+1, cfg)
|
|
|
|
if fieldvar.Unreadable != nil {
|
|
errcount++
|
|
}
|
|
|
|
v.Children = append(v.Children, *fieldvar)
|
|
if errcount > maxErrCount {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
func (v *Variable) readComplex(size int64) {
|
|
var fs int64
|
|
switch size {
|
|
case 8:
|
|
fs = 4
|
|
case 16:
|
|
fs = 8
|
|
default:
|
|
v.Unreadable = fmt.Errorf("invalid size (%d) for complex type", size)
|
|
return
|
|
}
|
|
|
|
ftyp := godwarf.FakeBasicType("float", int(fs*8))
|
|
|
|
realvar := v.newVariable("real", v.Addr, ftyp, v.mem)
|
|
imagvar := v.newVariable("imaginary", v.Addr+uint64(fs), ftyp, v.mem)
|
|
realvar.loadValue(loadSingleValue)
|
|
imagvar.loadValue(loadSingleValue)
|
|
v.Value = constant.BinaryOp(realvar.Value, token.ADD, constant.MakeImag(imagvar.Value))
|
|
}
|
|
|
|
func (v *Variable) writeComplex(real, imag float64, size int64) error {
|
|
err := v.writeFloatRaw(real, size/2)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
imagaddr := *v
|
|
imagaddr.Addr += uint64(size / 2)
|
|
return imagaddr.writeFloatRaw(imag, size/2)
|
|
}
|
|
|
|
func readIntRaw(mem MemoryReadWriter, addr uint64, size int64) (int64, error) {
|
|
var n int64
|
|
|
|
val := make([]byte, int(size))
|
|
_, err := mem.ReadMemory(val, addr)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
switch size {
|
|
case 1:
|
|
n = int64(int8(val[0]))
|
|
case 2:
|
|
n = int64(int16(binary.LittleEndian.Uint16(val)))
|
|
case 4:
|
|
n = int64(int32(binary.LittleEndian.Uint32(val)))
|
|
case 8:
|
|
n = int64(binary.LittleEndian.Uint64(val))
|
|
}
|
|
|
|
return n, nil
|
|
}
|
|
|
|
func (v *Variable) writeUint(value uint64, size int64) error {
|
|
val := make([]byte, size)
|
|
|
|
switch size {
|
|
case 1:
|
|
val[0] = byte(value)
|
|
case 2:
|
|
binary.LittleEndian.PutUint16(val, uint16(value))
|
|
case 4:
|
|
binary.LittleEndian.PutUint32(val, uint32(value))
|
|
case 8:
|
|
binary.LittleEndian.PutUint64(val, value)
|
|
}
|
|
|
|
_, err := v.mem.WriteMemory(v.Addr, val)
|
|
return err
|
|
}
|
|
|
|
func readUintRaw(mem MemoryReadWriter, addr uint64, size int64) (uint64, error) {
|
|
var n uint64
|
|
|
|
val := make([]byte, int(size))
|
|
_, err := mem.ReadMemory(val, addr)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
switch size {
|
|
case 1:
|
|
n = uint64(val[0])
|
|
case 2:
|
|
n = uint64(binary.LittleEndian.Uint16(val))
|
|
case 4:
|
|
n = uint64(binary.LittleEndian.Uint32(val))
|
|
case 8:
|
|
n = binary.LittleEndian.Uint64(val)
|
|
}
|
|
|
|
return n, nil
|
|
}
|
|
|
|
func (v *Variable) readFloatRaw(size int64) (float64, error) {
|
|
val := make([]byte, int(size))
|
|
_, err := v.mem.ReadMemory(val, v.Addr)
|
|
if err != nil {
|
|
return 0.0, err
|
|
}
|
|
buf := bytes.NewBuffer(val)
|
|
|
|
switch size {
|
|
case 4:
|
|
n := float32(0)
|
|
binary.Read(buf, binary.LittleEndian, &n)
|
|
return float64(n), nil
|
|
case 8:
|
|
n := float64(0)
|
|
binary.Read(buf, binary.LittleEndian, &n)
|
|
return n, nil
|
|
}
|
|
|
|
return 0.0, errors.New("could not read float")
|
|
}
|
|
|
|
func (v *Variable) writeFloatRaw(f float64, size int64) error {
|
|
buf := bytes.NewBuffer(make([]byte, 0, size))
|
|
|
|
switch size {
|
|
case 4:
|
|
n := float32(f)
|
|
binary.Write(buf, binary.LittleEndian, n)
|
|
case 8:
|
|
n := f
|
|
binary.Write(buf, binary.LittleEndian, n)
|
|
}
|
|
|
|
_, err := v.mem.WriteMemory(v.Addr, buf.Bytes())
|
|
return err
|
|
}
|
|
|
|
func (v *Variable) writeBool(value bool) error {
|
|
val := []byte{0}
|
|
val[0] = *(*byte)(unsafe.Pointer(&value))
|
|
_, err := v.mem.WriteMemory(v.Addr, val)
|
|
return err
|
|
}
|
|
|
|
func (v *Variable) writeZero() error {
|
|
val := make([]byte, v.RealType.Size())
|
|
_, err := v.mem.WriteMemory(v.Addr, val)
|
|
return err
|
|
}
|
|
|
|
// writeEmptyInterface writes the empty interface of type typeAddr and data as the data field.
|
|
func (v *Variable) writeEmptyInterface(typeAddr uint64, data *Variable) error {
|
|
dstType, dstData, _ := v.readInterface()
|
|
if v.Unreadable != nil {
|
|
return v.Unreadable
|
|
}
|
|
dstType.writeUint(typeAddr, dstType.RealType.Size())
|
|
dstData.writeCopy(data)
|
|
return nil
|
|
}
|
|
|
|
func (v *Variable) writeSlice(len, cap int64, base uint64) error {
|
|
for _, f := range v.RealType.(*godwarf.SliceType).Field {
|
|
switch f.Name {
|
|
case sliceArrayFieldName:
|
|
arrv, _ := v.toField(f)
|
|
if err := arrv.writeUint(base, arrv.RealType.Size()); err != nil {
|
|
return err
|
|
}
|
|
case sliceLenFieldName:
|
|
lenv, _ := v.toField(f)
|
|
if err := lenv.writeUint(uint64(len), lenv.RealType.Size()); err != nil {
|
|
return err
|
|
}
|
|
case sliceCapFieldName:
|
|
capv, _ := v.toField(f)
|
|
if err := capv.writeUint(uint64(cap), capv.RealType.Size()); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (v *Variable) writeString(len, base uint64) error {
|
|
writePointer(v.bi, v.mem, v.Addr, base)
|
|
writePointer(v.bi, v.mem, v.Addr+uint64(v.bi.Arch.PtrSize()), len)
|
|
return nil
|
|
}
|
|
|
|
func (v *Variable) writeCopy(srcv *Variable) error {
|
|
buf := make([]byte, srcv.RealType.Size())
|
|
_, err := srcv.mem.ReadMemory(buf, srcv.Addr)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
_, err = v.mem.WriteMemory(v.Addr, buf)
|
|
return err
|
|
}
|
|
|
|
func (v *Variable) loadFunctionPtr(recurseLevel int, cfg LoadConfig) {
|
|
// dereference pointer to find function pc
|
|
v.closureAddr = v.funcvalAddr()
|
|
if v.Unreadable != nil {
|
|
return
|
|
}
|
|
if v.closureAddr == 0 {
|
|
v.Base = 0
|
|
v.Value = constant.MakeString("")
|
|
return
|
|
}
|
|
|
|
val, err := readUintRaw(v.mem, v.closureAddr, int64(v.bi.Arch.PtrSize()))
|
|
if err != nil {
|
|
v.Unreadable = err
|
|
return
|
|
}
|
|
|
|
v.Base = val
|
|
fn := v.bi.PCToFunc(v.Base)
|
|
if fn == nil {
|
|
v.Unreadable = fmt.Errorf("could not find function for %#v", v.Base)
|
|
return
|
|
}
|
|
|
|
v.Value = constant.MakeString(fn.Name)
|
|
cst := fn.extra(v.bi).closureStructType
|
|
v.Len = int64(len(cst.Field))
|
|
|
|
if recurseLevel <= cfg.MaxVariableRecurse {
|
|
v2 := v.newVariable("", v.closureAddr, cst, v.mem)
|
|
v2.loadValueInternal(recurseLevel, cfg)
|
|
v.Children = v2.Children
|
|
}
|
|
}
|
|
|
|
// funcvalAddr reads the address of the funcval contained in a function variable.
|
|
func (v *Variable) funcvalAddr() uint64 {
|
|
val, err := readUintRaw(v.mem, v.Addr, int64(v.bi.Arch.PtrSize()))
|
|
if err != nil {
|
|
v.Unreadable = err
|
|
return 0
|
|
}
|
|
return val
|
|
}
|
|
|
|
func (v *Variable) loadMap(recurseLevel int, cfg LoadConfig) {
|
|
it := v.mapIterator()
|
|
if it == nil {
|
|
return
|
|
}
|
|
it.maxNumBuckets = uint64(cfg.MaxMapBuckets)
|
|
|
|
if v.Len == 0 || int64(v.mapSkip) >= v.Len || cfg.MaxArrayValues == 0 {
|
|
return
|
|
}
|
|
|
|
for skip := 0; skip < v.mapSkip; skip++ {
|
|
if ok := it.next(); !ok {
|
|
v.Unreadable = errors.New("map index out of bounds")
|
|
return
|
|
}
|
|
}
|
|
|
|
count := 0
|
|
errcount := 0
|
|
for it.next() {
|
|
key := it.key()
|
|
var val *Variable
|
|
if it.values.fieldType.Size() > 0 {
|
|
val = it.value()
|
|
} else {
|
|
val = v.newVariable("", it.values.Addr, it.values.fieldType, DereferenceMemory(v.mem))
|
|
}
|
|
key.loadValueInternal(recurseLevel+1, cfg)
|
|
val.loadValueInternal(recurseLevel+1, cfg)
|
|
if key.Unreadable != nil || val.Unreadable != nil {
|
|
errcount++
|
|
}
|
|
v.Children = append(v.Children, *key, *val)
|
|
count++
|
|
if errcount > maxErrCount {
|
|
break
|
|
}
|
|
if count >= cfg.MaxArrayValues || int64(count) >= v.Len {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
type mapIterator struct {
|
|
v *Variable
|
|
numbuckets uint64
|
|
oldmask uint64
|
|
buckets *Variable
|
|
oldbuckets *Variable
|
|
b *Variable
|
|
bidx uint64
|
|
|
|
tophashes *Variable
|
|
keys *Variable
|
|
values *Variable
|
|
overflow *Variable
|
|
|
|
maxNumBuckets uint64 // maximum number of buckets to scan
|
|
|
|
idx int64
|
|
|
|
hashTophashEmptyOne uint64 // Go 1.12 and later has two sentinel tophash values for an empty cell, this is the second one (the first one hashTophashEmptyZero, the same as Go 1.11 and earlier)
|
|
hashMinTopHash uint64 // minimum value of tophash for a cell that isn't either evacuated or empty
|
|
}
|
|
|
|
// Code derived from go/src/runtime/hashmap.go
|
|
func (v *Variable) mapIterator() *mapIterator {
|
|
sv := v.clone()
|
|
sv.RealType = resolveTypedef(&(sv.RealType.(*godwarf.MapType).TypedefType))
|
|
sv = sv.maybeDereference()
|
|
v.Base = sv.Addr
|
|
|
|
maptype, ok := sv.RealType.(*godwarf.StructType)
|
|
if !ok {
|
|
v.Unreadable = errors.New("wrong real type for map")
|
|
return nil
|
|
}
|
|
|
|
it := &mapIterator{v: v, bidx: 0, b: nil, idx: 0}
|
|
|
|
if sv.Addr == 0 {
|
|
it.numbuckets = 0
|
|
return it
|
|
}
|
|
|
|
v.mem = cacheMemory(v.mem, v.Base, int(v.RealType.Size()))
|
|
|
|
for _, f := range maptype.Field {
|
|
var err error
|
|
field, _ := sv.toField(f)
|
|
switch f.Name {
|
|
case "count": // +rtype -fieldof hmap int
|
|
v.Len, err = field.asInt()
|
|
case "B": // +rtype -fieldof hmap uint8
|
|
var b uint64
|
|
b, err = field.asUint()
|
|
it.numbuckets = 1 << b
|
|
it.oldmask = (1 << (b - 1)) - 1
|
|
case "buckets": // +rtype -fieldof hmap unsafe.Pointer
|
|
it.buckets = field.maybeDereference()
|
|
case "oldbuckets": // +rtype -fieldof hmap unsafe.Pointer
|
|
it.oldbuckets = field.maybeDereference()
|
|
}
|
|
if err != nil {
|
|
v.Unreadable = err
|
|
return nil
|
|
}
|
|
}
|
|
|
|
if it.buckets.Kind != reflect.Struct || it.oldbuckets.Kind != reflect.Struct {
|
|
v.Unreadable = errMapBucketsNotStruct
|
|
return nil
|
|
}
|
|
|
|
it.hashTophashEmptyOne = hashTophashEmptyZero
|
|
it.hashMinTopHash = hashMinTopHashGo111
|
|
if producer := v.bi.Producer(); producer != "" && goversion.ProducerAfterOrEqual(producer, 1, 12) {
|
|
it.hashTophashEmptyOne = hashTophashEmptyOne
|
|
it.hashMinTopHash = hashMinTopHashGo112
|
|
}
|
|
|
|
return it
|
|
}
|
|
|
|
var errMapBucketContentsNotArray = errors.New("malformed map type: keys, values or tophash of a bucket is not an array")
|
|
var errMapBucketContentsInconsistentLen = errors.New("malformed map type: inconsistent array length in bucket")
|
|
var errMapBucketsNotStruct = errors.New("malformed map type: buckets, oldbuckets or overflow field not a struct")
|
|
|
|
func (it *mapIterator) nextBucket() bool {
|
|
if it.overflow != nil && it.overflow.Addr > 0 {
|
|
it.b = it.overflow
|
|
} else {
|
|
it.b = nil
|
|
|
|
if it.maxNumBuckets > 0 && it.bidx >= it.maxNumBuckets {
|
|
return false
|
|
}
|
|
|
|
for it.bidx < it.numbuckets {
|
|
it.b = it.buckets.clone()
|
|
it.b.Addr += uint64(it.buckets.DwarfType.Size()) * it.bidx
|
|
|
|
if it.oldbuckets.Addr <= 0 {
|
|
break
|
|
}
|
|
|
|
// if oldbuckets is not nil we are iterating through a map that is in
|
|
// the middle of a grow.
|
|
// if the bucket we are looking at hasn't been filled in we iterate
|
|
// instead through its corresponding "oldbucket" (i.e. the bucket the
|
|
// elements of this bucket are coming from) but only if this is the first
|
|
// of the two buckets being created from the same oldbucket (otherwise we
|
|
// would print some keys twice)
|
|
|
|
oldbidx := it.bidx & it.oldmask
|
|
oldb := it.oldbuckets.clone()
|
|
oldb.Addr += uint64(it.oldbuckets.DwarfType.Size()) * oldbidx
|
|
|
|
if it.mapEvacuated(oldb) {
|
|
break
|
|
}
|
|
|
|
if oldbidx == it.bidx {
|
|
it.b = oldb
|
|
break
|
|
}
|
|
|
|
// oldbucket origin for current bucket has not been evacuated but we have already
|
|
// iterated over it so we should just skip it
|
|
it.b = nil
|
|
it.bidx++
|
|
}
|
|
|
|
if it.b == nil {
|
|
return false
|
|
}
|
|
it.bidx++
|
|
}
|
|
|
|
if it.b.Addr <= 0 {
|
|
return false
|
|
}
|
|
|
|
it.b.mem = cacheMemory(it.b.mem, it.b.Addr, int(it.b.RealType.Size()))
|
|
|
|
it.tophashes = nil
|
|
it.keys = nil
|
|
it.values = nil
|
|
it.overflow = nil
|
|
|
|
for _, f := range it.b.DwarfType.(*godwarf.StructType).Field {
|
|
field, err := it.b.toField(f)
|
|
if err != nil {
|
|
it.v.Unreadable = err
|
|
return false
|
|
}
|
|
if field.Unreadable != nil {
|
|
it.v.Unreadable = field.Unreadable
|
|
return false
|
|
}
|
|
|
|
switch f.Name {
|
|
case "tophash": // +rtype -fieldof bmap [8]uint8
|
|
it.tophashes = field
|
|
case "keys":
|
|
it.keys = field
|
|
case "values":
|
|
it.values = field
|
|
case "overflow":
|
|
it.overflow = field.maybeDereference()
|
|
}
|
|
}
|
|
|
|
// sanity checks
|
|
if it.tophashes == nil || it.keys == nil || it.values == nil {
|
|
it.v.Unreadable = errors.New("malformed map type")
|
|
return false
|
|
}
|
|
|
|
if it.tophashes.Kind != reflect.Array || it.keys.Kind != reflect.Array || it.values.Kind != reflect.Array {
|
|
it.v.Unreadable = errMapBucketContentsNotArray
|
|
return false
|
|
}
|
|
|
|
if it.tophashes.Len != it.keys.Len {
|
|
it.v.Unreadable = errMapBucketContentsInconsistentLen
|
|
return false
|
|
}
|
|
|
|
if it.values.fieldType.Size() > 0 && it.tophashes.Len != it.values.Len {
|
|
// if the type of the value is zero-sized (i.e. struct{}) then the values
|
|
// array's length is zero.
|
|
it.v.Unreadable = errMapBucketContentsInconsistentLen
|
|
return false
|
|
}
|
|
|
|
if it.overflow.Kind != reflect.Struct {
|
|
it.v.Unreadable = errMapBucketsNotStruct
|
|
return false
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
func (it *mapIterator) next() bool {
|
|
for {
|
|
if it.b == nil || it.idx >= it.tophashes.Len {
|
|
r := it.nextBucket()
|
|
if !r {
|
|
return false
|
|
}
|
|
it.idx = 0
|
|
}
|
|
tophash, _ := it.tophashes.sliceAccess(int(it.idx))
|
|
h, err := tophash.asUint()
|
|
if err != nil {
|
|
it.v.Unreadable = fmt.Errorf("unreadable tophash: %v", err)
|
|
return false
|
|
}
|
|
it.idx++
|
|
if h != hashTophashEmptyZero && h != it.hashTophashEmptyOne {
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
|
|
func (it *mapIterator) key() *Variable {
|
|
k, _ := it.keys.sliceAccess(int(it.idx - 1))
|
|
return k
|
|
}
|
|
|
|
func (it *mapIterator) value() *Variable {
|
|
v, _ := it.values.sliceAccess(int(it.idx - 1))
|
|
return v
|
|
}
|
|
|
|
func (it *mapIterator) mapEvacuated(b *Variable) bool {
|
|
if b.Addr == 0 {
|
|
return true
|
|
}
|
|
for _, f := range b.DwarfType.(*godwarf.StructType).Field {
|
|
if f.Name != "tophash" {
|
|
continue
|
|
}
|
|
tophashes, _ := b.toField(f)
|
|
tophash0var, _ := tophashes.sliceAccess(0)
|
|
tophash0, err := tophash0var.asUint()
|
|
if err != nil {
|
|
return true
|
|
}
|
|
//TODO: this needs to be > hashTophashEmptyOne for go >= 1.12
|
|
return tophash0 > it.hashTophashEmptyOne && tophash0 < it.hashMinTopHash
|
|
}
|
|
return true
|
|
}
|
|
|
|
func (v *Variable) readInterface() (_type, data *Variable, isnil bool) {
|
|
// An interface variable is implemented either by a runtime.iface
|
|
// struct or a runtime.eface struct. The difference being that empty
|
|
// interfaces (i.e. "interface {}") are represented by runtime.eface
|
|
// and non-empty interfaces by runtime.iface.
|
|
//
|
|
// For both runtime.ifaces and runtime.efaces the data is stored in v.data
|
|
//
|
|
// The concrete type however is stored in v.tab._type for non-empty
|
|
// interfaces and in v._type for empty interfaces.
|
|
//
|
|
// For nil empty interface variables _type will be nil, for nil
|
|
// non-empty interface variables tab will be nil
|
|
//
|
|
// In either case the _type field is a pointer to a runtime._type struct.
|
|
//
|
|
// The following code works for both runtime.iface and runtime.eface.
|
|
|
|
v.mem = cacheMemory(v.mem, v.Addr, int(v.RealType.Size()))
|
|
|
|
ityp := resolveTypedef(&v.RealType.(*godwarf.InterfaceType).TypedefType).(*godwarf.StructType)
|
|
|
|
// +rtype -field iface.tab *itab|*internal/abi.ITab
|
|
// +rtype -field iface.data unsafe.Pointer
|
|
// +rtype -field eface._type *_type|*internal/abi.Type
|
|
// +rtype -field eface.data unsafe.Pointer
|
|
|
|
for _, f := range ityp.Field {
|
|
switch f.Name {
|
|
case "tab": // for runtime.iface
|
|
tab, _ := v.toField(f) // +rtype *itab|*internal/abi.ITab
|
|
tab = tab.maybeDereference()
|
|
isnil = tab.Addr == 0
|
|
if !isnil {
|
|
var err error
|
|
_type, err = tab.structMember("Type") // +rtype *internal/abi.Type
|
|
if err != nil {
|
|
_type, err = tab.structMember("_type") // +rtype *_type|*internal/abi.Type
|
|
if err != nil {
|
|
v.Unreadable = fmt.Errorf("invalid interface type: %v", err)
|
|
return
|
|
}
|
|
}
|
|
}
|
|
case "_type": // for runtime.eface
|
|
_type, _ = v.toField(f)
|
|
isnil = _type.maybeDereference().Addr == 0
|
|
case "data":
|
|
data, _ = v.toField(f)
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
func (v *Variable) loadInterface(recurseLevel int, loadData bool, cfg LoadConfig) {
|
|
_type, data, isnil := v.readInterface()
|
|
|
|
if isnil {
|
|
// interface to nil
|
|
data = data.maybeDereference()
|
|
v.Children = []Variable{*data}
|
|
if loadData {
|
|
v.Children[0].loadValueInternal(recurseLevel, cfg)
|
|
}
|
|
return
|
|
}
|
|
|
|
if data == nil {
|
|
v.Unreadable = errors.New("invalid interface type")
|
|
return
|
|
}
|
|
|
|
mds, err := LoadModuleData(_type.bi, _type.mem)
|
|
if err != nil {
|
|
v.Unreadable = fmt.Errorf("error loading module data: %v", err)
|
|
return
|
|
}
|
|
|
|
typ, kind, err := RuntimeTypeToDIE(_type, data.Addr, mds)
|
|
if err != nil {
|
|
v.Unreadable = err
|
|
return
|
|
}
|
|
|
|
deref := false
|
|
if kind&kindDirectIface == 0 {
|
|
realtyp := resolveTypedef(typ)
|
|
if _, isptr := realtyp.(*godwarf.PtrType); !isptr {
|
|
typ = pointerTo(typ, v.bi.Arch)
|
|
deref = true
|
|
}
|
|
}
|
|
|
|
data = data.newVariable("data", data.Addr, typ, data.mem)
|
|
if deref {
|
|
data = data.maybeDereference()
|
|
data.Name = "data"
|
|
}
|
|
|
|
v.Children = []Variable{*data}
|
|
if loadData && recurseLevel <= cfg.MaxVariableRecurse {
|
|
v.Children[0].loadValueInternal(recurseLevel, cfg)
|
|
} else {
|
|
v.Children[0].OnlyAddr = true
|
|
}
|
|
}
|
|
|
|
// ConstDescr describes the value of v using constants.
|
|
func (v *Variable) ConstDescr() string {
|
|
if v.bi == nil || (v.Flags&VariableConstant != 0) {
|
|
return ""
|
|
}
|
|
ctyp := v.bi.consts.Get(v.DwarfType)
|
|
if ctyp == nil {
|
|
return ""
|
|
}
|
|
if typename := v.DwarfType.Common().Name; !strings.Contains(typename, ".") || strings.HasPrefix(typename, "C.") {
|
|
// only attempt to use constants for user defined type, otherwise every
|
|
// int variable with value 1 will be described with io.SeekCurrent and other
|
|
// similar problems.
|
|
return ""
|
|
}
|
|
|
|
switch v.Kind {
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
fallthrough
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
n, _ := constant.Int64Val(v.Value)
|
|
return ctyp.describe(n)
|
|
}
|
|
return ""
|
|
}
|
|
|
|
// registerVariableTypeConv implements type conversions for CPU register variables (REGNAME.int8, etc)
|
|
func (v *Variable) registerVariableTypeConv(newtyp string) (*Variable, error) {
|
|
var n int = 0
|
|
for i := 0; i < len(v.reg.Bytes); i += n {
|
|
var child *Variable
|
|
switch newtyp {
|
|
case "int8":
|
|
child = newConstant(constant.MakeInt64(int64(int8(v.reg.Bytes[i]))), v.mem)
|
|
child.Kind = reflect.Int8
|
|
n = 1
|
|
case "int16":
|
|
child = newConstant(constant.MakeInt64(int64(int16(binary.LittleEndian.Uint16(v.reg.Bytes[i:])))), v.mem)
|
|
child.Kind = reflect.Int16
|
|
n = 2
|
|
case "int32":
|
|
child = newConstant(constant.MakeInt64(int64(int32(binary.LittleEndian.Uint32(v.reg.Bytes[i:])))), v.mem)
|
|
child.Kind = reflect.Int32
|
|
n = 4
|
|
case "int64":
|
|
child = newConstant(constant.MakeInt64(int64(binary.LittleEndian.Uint64(v.reg.Bytes[i:]))), v.mem)
|
|
child.Kind = reflect.Int64
|
|
n = 8
|
|
case "uint8":
|
|
child = newConstant(constant.MakeUint64(uint64(v.reg.Bytes[i])), v.mem)
|
|
child.Kind = reflect.Uint8
|
|
n = 1
|
|
case "uint16":
|
|
child = newConstant(constant.MakeUint64(uint64(binary.LittleEndian.Uint16(v.reg.Bytes[i:]))), v.mem)
|
|
child.Kind = reflect.Uint16
|
|
n = 2
|
|
case "uint32":
|
|
child = newConstant(constant.MakeUint64(uint64(binary.LittleEndian.Uint32(v.reg.Bytes[i:]))), v.mem)
|
|
child.Kind = reflect.Uint32
|
|
n = 4
|
|
case "uint64":
|
|
child = newConstant(constant.MakeUint64(binary.LittleEndian.Uint64(v.reg.Bytes[i:])), v.mem)
|
|
child.Kind = reflect.Uint64
|
|
n = 8
|
|
case "float32":
|
|
a := binary.LittleEndian.Uint32(v.reg.Bytes[i:])
|
|
x := *(*float32)(unsafe.Pointer(&a))
|
|
child = newConstant(constant.MakeFloat64(float64(x)), v.mem)
|
|
child.Kind = reflect.Float32
|
|
n = 4
|
|
case "float64":
|
|
a := binary.LittleEndian.Uint64(v.reg.Bytes[i:])
|
|
x := *(*float64)(unsafe.Pointer(&a))
|
|
child = newConstant(constant.MakeFloat64(x), v.mem)
|
|
child.Kind = reflect.Float64
|
|
n = 8
|
|
default:
|
|
if n == 0 {
|
|
for _, pfx := range []string{"uint", "int"} {
|
|
if strings.HasPrefix(newtyp, pfx) {
|
|
n, _ = strconv.Atoi(newtyp[len(pfx):])
|
|
break
|
|
}
|
|
}
|
|
if n == 0 || bits.OnesCount64(uint64(n)) != 1 {
|
|
return nil, fmt.Errorf("unknown CPU register type conversion to %q", newtyp)
|
|
}
|
|
n = n / 8
|
|
}
|
|
child = newConstant(constant.MakeString(fmt.Sprintf("%x", v.reg.Bytes[i:][:n])), v.mem)
|
|
}
|
|
v.Children = append(v.Children, *child)
|
|
}
|
|
|
|
v.loaded = true
|
|
v.Kind = reflect.Array
|
|
v.Len = int64(len(v.Children))
|
|
v.Base = fakeAddressUnresolv
|
|
v.DwarfType = fakeArrayType(uint64(len(v.Children)), &godwarf.VoidType{CommonType: godwarf.CommonType{ByteSize: int64(n)}})
|
|
v.RealType = v.DwarfType
|
|
return v, nil
|
|
}
|
|
|
|
func isCgoType(bi *BinaryInfo, typ godwarf.Type) bool {
|
|
cu := bi.Images[typ.Common().Index].findCompileUnitForOffset(typ.Common().Offset)
|
|
if cu == nil {
|
|
return false
|
|
}
|
|
return !cu.isgo
|
|
}
|
|
|
|
func isCgoCharPtr(bi *BinaryInfo, typ *godwarf.PtrType) bool {
|
|
if !isCgoType(bi, typ) {
|
|
return false
|
|
}
|
|
|
|
fieldtyp := typ.Type
|
|
resolveQualTypedef:
|
|
for {
|
|
switch t := fieldtyp.(type) {
|
|
case *godwarf.QualType:
|
|
fieldtyp = t.Type
|
|
case *godwarf.TypedefType:
|
|
fieldtyp = t.Type
|
|
default:
|
|
break resolveQualTypedef
|
|
}
|
|
}
|
|
|
|
_, ischar := fieldtyp.(*godwarf.CharType)
|
|
_, isuchar := fieldtyp.(*godwarf.UcharType)
|
|
return ischar || isuchar
|
|
}
|
|
|
|
func (cm constantsMap) Get(typ godwarf.Type) *constantType {
|
|
ctyp := cm[dwarfRef{typ.Common().Index, typ.Common().Offset}]
|
|
if ctyp == nil {
|
|
return nil
|
|
}
|
|
typepkg := packageName(typ.String()) + "."
|
|
if !ctyp.initialized {
|
|
ctyp.initialized = true
|
|
sort.Sort(constantValuesByValue(ctyp.values))
|
|
for i := range ctyp.values {
|
|
ctyp.values[i].name = strings.TrimPrefix(ctyp.values[i].name, typepkg)
|
|
if bits.OnesCount64(uint64(ctyp.values[i].value)) == 1 {
|
|
ctyp.values[i].singleBit = true
|
|
}
|
|
}
|
|
}
|
|
return ctyp
|
|
}
|
|
|
|
func (ctyp *constantType) describe(n int64) string {
|
|
for _, val := range ctyp.values {
|
|
if val.value == n {
|
|
return val.name
|
|
}
|
|
}
|
|
|
|
if n == 0 {
|
|
return ""
|
|
}
|
|
|
|
// If all the values for this constant only have one bit set we try to
|
|
// represent the value as a bitwise or of constants.
|
|
|
|
fields := []string{}
|
|
for _, val := range ctyp.values {
|
|
if !val.singleBit {
|
|
continue
|
|
}
|
|
if n&val.value != 0 {
|
|
fields = append(fields, val.name)
|
|
n = n & ^val.value
|
|
}
|
|
}
|
|
if n == 0 {
|
|
return strings.Join(fields, "|")
|
|
}
|
|
return ""
|
|
}
|
|
|
|
type variablesByDepthAndDeclLine struct {
|
|
vars []*Variable
|
|
depths []int
|
|
}
|
|
|
|
func (v *variablesByDepthAndDeclLine) Len() int { return len(v.vars) }
|
|
|
|
func (v *variablesByDepthAndDeclLine) Less(i int, j int) bool {
|
|
if v.depths[i] == v.depths[j] {
|
|
return v.vars[i].DeclLine < v.vars[j].DeclLine
|
|
}
|
|
return v.depths[i] < v.depths[j]
|
|
}
|
|
|
|
func (v *variablesByDepthAndDeclLine) Swap(i int, j int) {
|
|
v.depths[i], v.depths[j] = v.depths[j], v.depths[i]
|
|
v.vars[i], v.vars[j] = v.vars[j], v.vars[i]
|
|
}
|
|
|
|
type constantValuesByValue []constantValue
|
|
|
|
func (v constantValuesByValue) Len() int { return len(v) }
|
|
func (v constantValuesByValue) Less(i int, j int) bool { return v[i].value < v[j].value }
|
|
func (v constantValuesByValue) Swap(i int, j int) { v[i], v[j] = v[j], v[i] }
|
|
|
|
const (
|
|
timeTimeWallHasMonotonicBit uint64 = (1 << 63) // hasMonotonic bit of time.Time.wall
|
|
|
|
//lint:ignore ST1011 addSeconds is the name of the relevant function
|
|
maxAddSeconds time.Duration = (time.Duration(^uint64(0)>>1) / time.Second) * time.Second // maximum number of seconds that can be added with (time.Time).Add, measured in nanoseconds
|
|
|
|
wallNsecShift = 30 // size of the nanoseconds field of time.Time.wall
|
|
|
|
unixTimestampOfWallEpoch = -2682288000 // number of seconds between the unix epoch and the epoch for time.Time.wall (1 jan 1885)
|
|
)
|
|
|
|
// formatTime writes formatted value of a time.Time to v.Value.
|
|
// See $GOROOT/src/time/time.go for a description of time.Time internals.
|
|
func (v *Variable) formatTime() {
|
|
wallv := v.fieldVariable("wall")
|
|
extv := v.fieldVariable("ext")
|
|
if wallv == nil || extv == nil || wallv.Unreadable != nil || extv.Unreadable != nil || wallv.Value == nil || extv.Value == nil {
|
|
return
|
|
}
|
|
|
|
var loc *time.Location
|
|
|
|
locv := v.fieldVariable("loc")
|
|
if locv != nil && locv.Unreadable == nil {
|
|
namev := locv.loadFieldNamed("name")
|
|
if namev != nil && namev.Unreadable == nil {
|
|
name := constant.StringVal(namev.Value)
|
|
loc, _ = time.LoadLocation(name)
|
|
}
|
|
}
|
|
|
|
wall, _ := constant.Uint64Val(wallv.Value)
|
|
ext, _ := constant.Int64Val(extv.Value)
|
|
|
|
hasMonotonic := (wall & timeTimeWallHasMonotonicBit) != 0
|
|
if hasMonotonic {
|
|
// the 33-bit field of wall holds a 33-bit unsigned wall
|
|
// seconds since Jan 1 year 1885, and ext holds a signed 64-bit monotonic
|
|
// clock reading, nanoseconds since process start
|
|
sec := int64(wall << 1 >> (wallNsecShift + 1)) // seconds since 1 Jan 1885
|
|
t := time.Unix(sec+unixTimestampOfWallEpoch, 0).UTC()
|
|
if loc != nil {
|
|
t = t.In(loc)
|
|
}
|
|
v.Value = constant.MakeString(fmt.Sprintf("%s, %+d", t.Format(time.RFC3339), ext))
|
|
} else {
|
|
// the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext
|
|
var t time.Time
|
|
if ext > int64(maxAddSeconds/time.Second)*1000 {
|
|
// avoid doing the add loop below if it will take too much time
|
|
return
|
|
}
|
|
for ext > int64(maxAddSeconds/time.Second) {
|
|
t = t.Add(maxAddSeconds)
|
|
ext -= int64(maxAddSeconds / time.Second)
|
|
}
|
|
t = t.Add(time.Duration(ext) * time.Second)
|
|
if loc != nil {
|
|
t = t.In(loc)
|
|
}
|
|
v.Value = constant.MakeString(t.Format(time.RFC3339))
|
|
}
|
|
}
|