delve/service/api/conversions.go
Alessandro Arzilli 658d36cb19
proc: allow multiple overlapping internal breakpoints (#2519)
Changes Breakpoint to allow multiple overlapping internal breakpoints
on the same instruction address.
This is done by changing the Breakpoint structure to contain a list of
"breaklets", each breaklet has a BreakpointKind and a condition
expression, independent of the other.
A breakpoint is considered active if any of its breaklets are active.
A breakpoint is removed when all its breaklets are removed.
We also change the terminology "internal breakpoint" to "stepping
breakpoint":

HasInternalBreakpoints -> HasSteppingBreakpoints
IsInternal -> IsStepping
etc...

The motivation for this change is implementing watchpoints on stack
variables.
Watching a stack variable requires also setting a special breakpoint to
find out when the variable goes out of scope. These breakpoints can not
be UserBreakpoints because only one user breakpoint is allowed on the
same instruction and they can not be internal breakpoints because they
should not be cleared when a next operation is completed (they should
be cleared when the variable watch is cleared).

Updates #279
2021-07-21 08:24:19 -07:00

449 lines
11 KiB
Go

package api
import (
"bytes"
"fmt"
"go/constant"
"go/printer"
"go/token"
"reflect"
"sort"
"strconv"
"strings"
"github.com/go-delve/delve/pkg/dwarf/godwarf"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/proc"
)
// ConvertBreakpoint converts from a proc.Breakpoint to
// an api.Breakpoint.
func ConvertBreakpoint(bp *proc.Breakpoint) *Breakpoint {
b := &Breakpoint{
Name: bp.Name,
ID: bp.LogicalID,
FunctionName: bp.FunctionName,
File: bp.File,
Line: bp.Line,
Addr: bp.Addr,
Tracepoint: bp.Tracepoint,
TraceReturn: bp.TraceReturn,
Stacktrace: bp.Stacktrace,
Goroutine: bp.Goroutine,
Variables: bp.Variables,
LoadArgs: LoadConfigFromProc(bp.LoadArgs),
LoadLocals: LoadConfigFromProc(bp.LoadLocals),
WatchExpr: bp.WatchExpr,
WatchType: WatchType(bp.WatchType),
Addrs: []uint64{bp.Addr},
}
breaklet := bp.UserBreaklet()
if breaklet != nil {
b.TotalHitCount = breaklet.TotalHitCount
b.HitCount = map[string]uint64{}
for idx := range breaklet.HitCount {
b.HitCount[strconv.Itoa(idx)] = breaklet.HitCount[idx]
}
var buf bytes.Buffer
printer.Fprint(&buf, token.NewFileSet(), breaklet.Cond)
b.Cond = buf.String()
if breaklet.HitCond != nil {
b.HitCond = fmt.Sprintf("%s %d", breaklet.HitCond.Op.String(), breaklet.HitCond.Val)
}
}
return b
}
// ConvertBreakpoints converts a slice of physical breakpoints into a slice
// of logical breakpoints.
// The input must be sorted by increasing LogicalID
func ConvertBreakpoints(bps []*proc.Breakpoint) []*Breakpoint {
if len(bps) <= 0 {
return nil
}
r := make([]*Breakpoint, 0, len(bps))
for _, bp := range bps {
if len(r) > 0 {
if r[len(r)-1].ID == bp.LogicalID {
r[len(r)-1].Addrs = append(r[len(r)-1].Addrs, bp.Addr)
continue
} else if r[len(r)-1].ID > bp.LogicalID {
panic("input not sorted")
}
}
r = append(r, ConvertBreakpoint(bp))
}
return r
}
// ConvertThread converts a proc.Thread into an
// api thread.
func ConvertThread(th proc.Thread) *Thread {
var (
function *Function
file string
line int
pc uint64
gid int
)
loc, err := th.Location()
if err == nil {
pc = loc.PC
file = loc.File
line = loc.Line
function = ConvertFunction(loc.Fn)
}
var bp *Breakpoint
if b := th.Breakpoint(); b.Active {
bp = ConvertBreakpoint(b.Breakpoint)
}
if g, _ := proc.GetG(th); g != nil {
gid = g.ID
}
return &Thread{
ID: th.ThreadID(),
PC: pc,
File: file,
Line: line,
Function: function,
GoroutineID: gid,
Breakpoint: bp,
}
}
// ConvertThreads converts a slice of proc.Thread into a slice of api.Thread.
func ConvertThreads(threads []proc.Thread) []*Thread {
r := make([]*Thread, len(threads))
for i := range threads {
r[i] = ConvertThread(threads[i])
}
return r
}
func PrettyTypeName(typ godwarf.Type) string {
if typ == nil {
return ""
}
if typ.Common().Name != "" {
return typ.Common().Name
}
r := typ.String()
if r == "*void" {
return "unsafe.Pointer"
}
return r
}
func convertFloatValue(v *proc.Variable, sz int) string {
switch v.FloatSpecial {
case proc.FloatIsPosInf:
return "+Inf"
case proc.FloatIsNegInf:
return "-Inf"
case proc.FloatIsNaN:
return "NaN"
}
f, _ := constant.Float64Val(v.Value)
return strconv.FormatFloat(f, 'f', -1, sz)
}
// ConvertVar converts from proc.Variable to api.Variable.
func ConvertVar(v *proc.Variable) *Variable {
r := Variable{
Addr: v.Addr,
OnlyAddr: v.OnlyAddr,
Name: v.Name,
Kind: v.Kind,
Len: v.Len,
Cap: v.Cap,
Flags: VariableFlags(v.Flags),
Base: v.Base,
LocationExpr: v.LocationExpr.String(),
DeclLine: v.DeclLine,
}
r.Type = PrettyTypeName(v.DwarfType)
r.RealType = PrettyTypeName(v.RealType)
if v.Unreadable != nil {
r.Unreadable = v.Unreadable.Error()
}
r.Value = VariableValueAsString(v)
switch v.Kind {
case reflect.Complex64:
r.Children = make([]Variable, 2)
r.Len = 2
r.Children[0].Name = "real"
r.Children[0].Kind = reflect.Float32
r.Children[1].Name = "imaginary"
r.Children[1].Kind = reflect.Float32
if v.Value != nil {
real, _ := constant.Float64Val(constant.Real(v.Value))
r.Children[0].Value = strconv.FormatFloat(real, 'f', -1, 32)
imag, _ := constant.Float64Val(constant.Imag(v.Value))
r.Children[1].Value = strconv.FormatFloat(imag, 'f', -1, 32)
} else {
r.Children[0].Value = "nil"
r.Children[1].Value = "nil"
}
case reflect.Complex128:
r.Children = make([]Variable, 2)
r.Len = 2
r.Children[0].Name = "real"
r.Children[0].Kind = reflect.Float64
r.Children[1].Name = "imaginary"
r.Children[1].Kind = reflect.Float64
if v.Value != nil {
real, _ := constant.Float64Val(constant.Real(v.Value))
r.Children[0].Value = strconv.FormatFloat(real, 'f', -1, 64)
imag, _ := constant.Float64Val(constant.Imag(v.Value))
r.Children[1].Value = strconv.FormatFloat(imag, 'f', -1, 64)
} else {
r.Children[0].Value = "nil"
r.Children[1].Value = "nil"
}
default:
r.Children = make([]Variable, len(v.Children))
for i := range v.Children {
r.Children[i] = *ConvertVar(&v.Children[i])
}
}
return &r
}
func VariableValueAsString(v *proc.Variable) string {
if v.Value == nil {
return ""
}
switch v.Kind {
case reflect.Float32:
return convertFloatValue(v, 32)
case reflect.Float64:
return convertFloatValue(v, 64)
case reflect.String, reflect.Func:
return constant.StringVal(v.Value)
default:
if cd := v.ConstDescr(); cd != "" {
return fmt.Sprintf("%s (%s)", cd, v.Value.String())
} else {
return v.Value.String()
}
}
}
// ConvertVars converts from []*proc.Variable to []api.Variable.
func ConvertVars(pv []*proc.Variable) []Variable {
if pv == nil {
return nil
}
vars := make([]Variable, 0, len(pv))
for _, v := range pv {
vars = append(vars, *ConvertVar(v))
}
return vars
}
// ConvertFunction converts from gosym.Func to
// api.Function.
func ConvertFunction(fn *proc.Function) *Function {
if fn == nil {
return nil
}
// fn here used to be a *gosym.Func, the fields Type and GoType below
// corresponded to the homonymous field of gosym.Func. Since the contents of
// those fields is not documented their value was replaced with 0 when
// gosym.Func was replaced by debug_info entries.
return &Function{
Name_: fn.Name,
Type: 0,
Value: fn.Entry,
GoType: 0,
Optimized: fn.Optimized(),
}
}
// ConvertGoroutine converts from proc.G to api.Goroutine.
func ConvertGoroutine(tgt *proc.Target, g *proc.G) *Goroutine {
th := g.Thread
tid := 0
if th != nil {
tid = th.ThreadID()
}
if g.Unreadable != nil {
return &Goroutine{Unreadable: g.Unreadable.Error()}
}
return &Goroutine{
ID: g.ID,
CurrentLoc: ConvertLocation(g.CurrentLoc),
UserCurrentLoc: ConvertLocation(g.UserCurrent()),
GoStatementLoc: ConvertLocation(g.Go()),
StartLoc: ConvertLocation(g.StartLoc(tgt)),
ThreadID: tid,
WaitSince: g.WaitSince,
WaitReason: g.WaitReason,
Labels: g.Labels(),
Status: g.Status,
}
}
// ConvertGoroutines converts from []*proc.G to []*api.Goroutine.
func ConvertGoroutines(tgt *proc.Target, gs []*proc.G) []*Goroutine {
goroutines := make([]*Goroutine, len(gs))
for i := range gs {
goroutines[i] = ConvertGoroutine(tgt, gs[i])
}
return goroutines
}
// ConvertLocation converts from proc.Location to api.Location.
func ConvertLocation(loc proc.Location) Location {
return Location{
PC: loc.PC,
File: loc.File,
Line: loc.Line,
Function: ConvertFunction(loc.Fn),
}
}
// ConvertAsmInstruction converts from proc.AsmInstruction to api.AsmInstruction.
func ConvertAsmInstruction(inst proc.AsmInstruction, text string) AsmInstruction {
var destloc *Location
if inst.DestLoc != nil {
r := ConvertLocation(*inst.DestLoc)
destloc = &r
}
return AsmInstruction{
Loc: ConvertLocation(inst.Loc),
DestLoc: destloc,
Text: text,
Bytes: inst.Bytes,
Breakpoint: inst.Breakpoint,
AtPC: inst.AtPC,
}
}
// LoadConfigToProc converts an api.LoadConfig to proc.LoadConfig.
func LoadConfigToProc(cfg *LoadConfig) *proc.LoadConfig {
if cfg == nil {
return nil
}
return &proc.LoadConfig{
FollowPointers: cfg.FollowPointers,
MaxVariableRecurse: cfg.MaxVariableRecurse,
MaxStringLen: cfg.MaxStringLen,
MaxArrayValues: cfg.MaxArrayValues,
MaxStructFields: cfg.MaxStructFields,
MaxMapBuckets: 0, // MaxMapBuckets is set internally by pkg/proc, read its documentation for an explanation.
}
}
// LoadConfigFromProc converts a proc.LoadConfig to api.LoadConfig.
func LoadConfigFromProc(cfg *proc.LoadConfig) *LoadConfig {
if cfg == nil {
return nil
}
return &LoadConfig{
FollowPointers: cfg.FollowPointers,
MaxVariableRecurse: cfg.MaxVariableRecurse,
MaxStringLen: cfg.MaxStringLen,
MaxArrayValues: cfg.MaxArrayValues,
MaxStructFields: cfg.MaxStructFields,
}
}
var canonicalRegisterOrder = map[string]int{
// amd64
"rip": 0,
"rsp": 1,
"rax": 2,
"rbx": 3,
"rcx": 4,
"rdx": 5,
// arm64
"pc": 0,
"sp": 1,
}
// ConvertRegisters converts proc.Register to api.Register for a slice.
func ConvertRegisters(in *op.DwarfRegisters, dwarfRegisterToString func(int, *op.DwarfRegister) (string, bool, string), floatingPoint bool) (out []Register) {
out = make([]Register, 0, in.CurrentSize())
for i := 0; i < in.CurrentSize(); i++ {
reg := in.Reg(uint64(i))
if reg == nil {
continue
}
name, fp, repr := dwarfRegisterToString(i, reg)
if !floatingPoint && fp {
continue
}
out = append(out, Register{name, repr, i})
}
// Sort the registers in a canonical order we prefer, this is mostly
// because the DWARF register numbering for AMD64 is weird.
sort.Slice(out, func(i, j int) bool {
a, b := out[i], out[j]
an, aok := canonicalRegisterOrder[strings.ToLower(a.Name)]
bn, bok := canonicalRegisterOrder[strings.ToLower(b.Name)]
// Registers that don't appear in canonicalRegisterOrder sort after registers that do.
if !aok {
an = 1000
}
if !bok {
bn = 1000
}
if an == bn {
// keep registers that don't appear in canonicalRegisterOrder in DWARF order
return a.DwarfNumber < b.DwarfNumber
}
return an < bn
})
return
}
func ConvertImage(image *proc.Image) Image {
return Image{Path: image.Path, Address: image.StaticBase}
}
func ConvertDumpState(dumpState *proc.DumpState) *DumpState {
dumpState.Mutex.Lock()
defer dumpState.Mutex.Unlock()
r := &DumpState{
Dumping: dumpState.Dumping,
AllDone: dumpState.AllDone,
ThreadsDone: dumpState.ThreadsDone,
ThreadsTotal: dumpState.ThreadsTotal,
MemDone: dumpState.MemDone,
MemTotal: dumpState.MemTotal,
}
if dumpState.Err != nil {
r.Err = dumpState.Err.Error()
}
return r
}