delve/pkg/proc/amd64util/xsave.go
Alessandro Arzilli e0c80c8612
pkg/proc/native,pkg/proc/amd64util: xsave decoding cleanup (#3840)
- move the cpuid querying code to pkg/proc/native/cpuid since
  pkg/proc/native is the only package entitled to calling it
- add a type to describe the xstate_bv bitmap instead of using
  hardcoded constants everywhere
- use xcr0 instead of xstate_bv for the offset heuristic like gdb does
2024-11-21 13:06:51 +01:00

217 lines
6.5 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package amd64util
import (
"bytes"
"encoding/binary"
"fmt"
"github.com/go-delve/delve/pkg/proc"
)
// AMD64Xstate represents amd64 XSAVE area. See Section 13.1 (and
// following) of Intel® 64 and IA-32 Architectures Software Developers
// Manual, Volume 1: Basic Architecture.
type AMD64Xstate struct {
AMD64PtraceFpRegs
Xsave []byte // raw xsave area
AvxState bool // contains AVX state
YmmSpace [256]byte
Avx512State bool // contains AVX512 state
ZmmSpace [512]byte
zmmHi256offset int
}
// AMD64PtraceFpRegs tracks user_fpregs_struct in /usr/include/x86_64-linux-gnu/sys/user.h
type AMD64PtraceFpRegs struct {
Cwd uint16
Swd uint16
Ftw uint16
Fop uint16
Rip uint64
Rdp uint64
Mxcsr uint32
MxcrMask uint32
StSpace [32]uint32
XmmSpace [256]byte
Padding [24]uint32
}
// Decode decodes an XSAVE area to a list of name/value pairs of registers.
func (xstate *AMD64Xstate) Decode() []proc.Register {
var regs []proc.Register
// x87 registers
regs = proc.AppendUint64Register(regs, "CW", uint64(xstate.Cwd))
regs = proc.AppendUint64Register(regs, "SW", uint64(xstate.Swd))
regs = proc.AppendUint64Register(regs, "TW", uint64(xstate.Ftw))
regs = proc.AppendUint64Register(regs, "FOP", uint64(xstate.Fop))
regs = proc.AppendUint64Register(regs, "FIP", xstate.Rip)
regs = proc.AppendUint64Register(regs, "FDP", xstate.Rdp)
for i := 0; i < len(xstate.StSpace); i += 4 {
var buf bytes.Buffer
binary.Write(&buf, binary.LittleEndian, uint64(xstate.StSpace[i+1])<<32|uint64(xstate.StSpace[i]))
binary.Write(&buf, binary.LittleEndian, uint16(xstate.StSpace[i+2]))
regs = proc.AppendBytesRegister(regs, fmt.Sprintf("ST(%d)", i/4), buf.Bytes())
}
// SSE registers
regs = proc.AppendUint64Register(regs, "MXCSR", uint64(xstate.Mxcsr))
regs = proc.AppendUint64Register(regs, "MXCSR_MASK", uint64(xstate.MxcrMask))
for i := 0; i < len(xstate.XmmSpace); i += 16 {
n := i / 16
regs = proc.AppendBytesRegister(regs, fmt.Sprintf("XMM%d", n), xstate.XmmSpace[i:i+16])
if xstate.AvxState {
regs = proc.AppendBytesRegister(regs, fmt.Sprintf("YMM%d", n), xstate.YmmSpace[i:i+16])
if xstate.Avx512State {
regs = proc.AppendBytesRegister(regs, fmt.Sprintf("ZMM%d", n), xstate.ZmmSpace[n*32:(n+1)*32])
}
}
}
return regs
}
const (
_XSAVE_XMM_REGION_START = 160
_XSAVE_HEADER_START = 512
_XSAVE_HEADER_LEN = 64
_XSAVE_EXTENDED_REGION_START = 576
_XSAVE_SSE_REGION_LEN = 416
_I386_LINUX_XSAVE_XCR0_OFFSET = 464
)
// xstate_bv is a type representing the xcr0 and xstate_bv bitmaps as
// described in section 13.1 and 13.3 of the Intel® 64 and IA-32 Architectures
// Software Developers Manual, Volume 1
type xstate_bv uint64
func (s xstate_bv) hasAVX() bool { return s&(1<<2) != 0 }
func (s xstate_bv) hasZMM_Hi256() bool { return s&(1<<6) != 0 }
func (s xstate_bv) hasHi16_ZMM() bool { return s&(1<<7) != 0 } //lint:ignore U1000 future use
func (s xstate_bv) hasPKRU() bool { return s&(1<<9) != 0 }
// AMD64XstateRead reads a byte array containing an XSAVE area into regset.
// If readLegacy is true regset.PtraceFpRegs will be filled with the
// contents of the legacy region of the XSAVE area.
// See Section 13.1 (and following) of Intel® 64 and IA-32 Architectures
// Software Developers Manual, Volume 1: Basic Architecture.
// If xstateZMMHi256Offset is zero, it will be guessed.
func AMD64XstateRead(xstateargs []byte, readLegacy bool, regset *AMD64Xstate, xstateZMMHi256Offset int) error {
if _XSAVE_HEADER_START+_XSAVE_HEADER_LEN >= len(xstateargs) {
return nil
}
if readLegacy {
rdr := bytes.NewReader(xstateargs[:_XSAVE_HEADER_START])
if err := binary.Read(rdr, binary.LittleEndian, &regset.AMD64PtraceFpRegs); err != nil {
return err
}
}
xcr0 := xstate_bv(binary.LittleEndian.Uint64(xstateargs[_I386_LINUX_XSAVE_XCR0_OFFSET:][:8]))
xsaveheader := xstateargs[_XSAVE_HEADER_START : _XSAVE_HEADER_START+_XSAVE_HEADER_LEN]
xstate_bv := xstate_bv(binary.LittleEndian.Uint64(xsaveheader[0:8]))
xcomp_bv := binary.LittleEndian.Uint64(xsaveheader[8:16])
fmt.Printf("xcr0: %#x xstate_bv: %#x\n", xcr0, xstate_bv)
if xcomp_bv&(1<<63) != 0 {
// compact format not supported
return nil
}
if !xstate_bv.hasAVX() {
return nil
}
avxstate := xstateargs[_XSAVE_EXTENDED_REGION_START:]
regset.AvxState = true
copy(regset.YmmSpace[:], avxstate[:len(regset.YmmSpace)])
if !xstate_bv.hasZMM_Hi256() {
return nil
}
if xstateZMMHi256Offset == 0 {
// Guess ZMM_Hi256 component offset
// ref: https://github.com/bminor/binutils-gdb/blob/df89bdf0baf106c3b0a9fae53e4e48607a7f3f87/gdb/i387-tdep.c#L916
if xcr0.hasPKRU() && len(xstateargs) == 2440 {
// AMD CPUs supporting PKRU
xstateZMMHi256Offset = 896
} else {
// Intel CPUs supporting AVX512
xstateZMMHi256Offset = 1152
}
}
regset.zmmHi256offset = xstateZMMHi256Offset
avx512state := xstateargs[xstateZMMHi256Offset:]
regset.Avx512State = true
copy(regset.ZmmSpace[:], avx512state[:len(regset.ZmmSpace)])
// TODO(aarzilli): if xstate_bv.hasHi16_ZMM() is set then xstateargs[1664:2688]
// contains ZMM16 through ZMM31, those aren't just the higher 256bits, it's
// the full register so each is 64 bytes (512bits)
return nil
}
func (xstate *AMD64Xstate) SetXmmRegister(n int, value []byte) error {
if n >= 16 {
return fmt.Errorf("setting register XMM%d not supported", n)
}
if len(value) > 64 {
return fmt.Errorf("value of register XMM%d too large (%d bytes)", n, len(value))
}
// Copy least significant 16 bytes to Xsave area
xmmval := value
if len(xmmval) > 16 {
xmmval = xmmval[:16]
}
rest := value[len(xmmval):]
xmmpos := _XSAVE_XMM_REGION_START + (n * 16)
if xmmpos >= len(xstate.Xsave) {
return fmt.Errorf("could not set XMM%d: not in XSAVE area", n)
}
copy(xstate.Xsave[xmmpos:], xmmval)
if len(rest) == 0 {
return nil
}
// Copy bytes [16, 32) to Xsave area
ymmval := rest
if len(ymmval) > 16 {
ymmval = ymmval[:16]
}
rest = rest[len(ymmval):]
ymmpos := _XSAVE_EXTENDED_REGION_START + (n * 16)
if ymmpos >= len(xstate.Xsave) {
return fmt.Errorf("could not set XMM%d: bytes 16..%d not in XSAVE area", n, 16+len(ymmval))
}
copy(xstate.Xsave[ymmpos:], ymmval)
if len(rest) == 0 {
return nil
}
// Copy bytes [32, 64) to Xsave area
zmmval := rest
zmmpos := xstate.zmmHi256offset + (n * 32) //TODO: change this!!!
if zmmpos >= len(xstate.Xsave) {
return fmt.Errorf("could not set XMM%d: bytes 32..%d not in XSAVE area", n, 32+len(zmmval))
}
copy(xstate.Xsave[zmmpos:], zmmval)
return nil
}