delve/pkg/proc/native/proc.go
Alessandro Arzilli e95ae9c21b
proc,terminal: read command line of new processes (#3346)
Read the command line of the main target process as well as any other
process Delve attaches to in follow exec mode.
The command line can be viewed using the 'target list' command.

In follow exec mode this command line is used to match the follow exec
regex to decide whether or not to attach to a child process.

On macOS or when using rr the list of arguments is not available for
attached processes since there is no way to use the gdb serial protocol
to read it.

Fixes #2242
2023-05-09 11:40:00 -07:00

451 lines
11 KiB
Go

package native
import (
"os"
"runtime"
"github.com/go-delve/delve/pkg/proc"
)
// Process represents all of the information the debugger
// is holding onto regarding the process we are debugging.
type nativeProcess struct {
bi *proc.BinaryInfo
pid int // Process Pid
// Breakpoint table, holds information on breakpoints.
// Maps instruction address to Breakpoint struct.
breakpoints proc.BreakpointMap
// List of threads mapped as such: pid -> *Thread
threads map[int]*nativeThread
// Thread used to read and write memory
memthread *nativeThread
os *osProcessDetails
firstStart bool
ptraceThread *ptraceThread
childProcess bool // this process was launched, not attached to
followExec bool // automatically attach to new processes
// Controlling terminal file descriptor for
// this process.
ctty *os.File
iscgo bool
exited, detached bool
}
// newProcess returns an initialized Process struct. Before returning,
// it will also launch a goroutine in order to handle ptrace(2)
// functions. For more information, see the documentation on
// `handlePtraceFuncs`.
func newProcess(pid int) *nativeProcess {
dbp := &nativeProcess{
pid: pid,
threads: make(map[int]*nativeThread),
breakpoints: proc.NewBreakpointMap(),
firstStart: true,
os: new(osProcessDetails),
ptraceThread: newPtraceThread(),
bi: proc.NewBinaryInfo(runtime.GOOS, runtime.GOARCH),
}
return dbp
}
// newChildProcess is like newProcess but uses the same ptrace thread as dbp.
func newChildProcess(dbp *nativeProcess, pid int) *nativeProcess {
return &nativeProcess{
pid: pid,
threads: make(map[int]*nativeThread),
breakpoints: proc.NewBreakpointMap(),
firstStart: true,
os: new(osProcessDetails),
ptraceThread: dbp.ptraceThread.acquire(),
bi: proc.NewBinaryInfo(runtime.GOOS, runtime.GOARCH),
}
}
// BinInfo will return the binary info struct associated with this process.
func (dbp *nativeProcess) BinInfo() *proc.BinaryInfo {
return dbp.bi
}
// StartCallInjection notifies the backend that we are about to inject a function call.
func (dbp *nativeProcess) StartCallInjection() (func(), error) { return func() {}, nil }
// Detach from the process being debugged, optionally killing it.
func (dbp *nativeProcess) Detach(kill bool) (err error) {
if dbp.exited {
return nil
}
if kill && dbp.childProcess {
err := dbp.kill()
if err != nil {
return err
}
dbp.bi.Close()
return nil
}
dbp.execPtraceFunc(func() {
err = dbp.detach(kill)
if err != nil {
return
}
if kill {
err = killProcess(dbp.pid)
}
})
dbp.detached = true
dbp.postExit()
return
}
// Valid returns whether the process is still attached to and
// has not exited.
func (dbp *nativeProcess) Valid() (bool, error) {
if dbp.detached {
return false, proc.ErrProcessDetached
}
if dbp.exited {
return false, proc.ErrProcessExited{Pid: dbp.pid}
}
return true, nil
}
// ThreadList returns a list of threads in the process.
func (dbp *nativeProcess) ThreadList() []proc.Thread {
r := make([]proc.Thread, 0, len(dbp.threads))
for _, v := range dbp.threads {
r = append(r, v)
}
return r
}
// FindThread attempts to find the thread with the specified ID.
func (dbp *nativeProcess) FindThread(threadID int) (proc.Thread, bool) {
th, ok := dbp.threads[threadID]
return th, ok
}
// Memory returns the process memory.
func (dbp *nativeProcess) Memory() proc.MemoryReadWriter {
return dbp.memthread
}
// Breakpoints returns a list of breakpoints currently set.
func (dbp *nativeProcess) Breakpoints() *proc.BreakpointMap {
return &dbp.breakpoints
}
// RequestManualStop sets the `manualStopRequested` flag and
// sends SIGSTOP to all threads.
func (dbp *nativeProcess) RequestManualStop(cctx *proc.ContinueOnceContext) error {
if dbp.exited {
return proc.ErrProcessExited{Pid: dbp.pid}
}
return dbp.requestManualStop()
}
func (dbp *nativeProcess) WriteBreakpoint(bp *proc.Breakpoint) error {
if bp.WatchType != 0 {
for _, thread := range dbp.threads {
err := thread.writeHardwareBreakpoint(bp.Addr, bp.WatchType, bp.HWBreakIndex)
if err != nil {
return err
}
}
return nil
}
bp.OriginalData = make([]byte, dbp.bi.Arch.BreakpointSize())
_, err := dbp.memthread.ReadMemory(bp.OriginalData, bp.Addr)
if err != nil {
return err
}
return dbp.writeSoftwareBreakpoint(dbp.memthread, bp.Addr)
}
func (dbp *nativeProcess) EraseBreakpoint(bp *proc.Breakpoint) error {
if bp.WatchType != 0 {
for _, thread := range dbp.threads {
err := thread.clearHardwareBreakpoint(bp.Addr, bp.WatchType, bp.HWBreakIndex)
if err != nil {
return err
}
}
return nil
}
return dbp.memthread.clearSoftwareBreakpoint(bp)
}
type processGroup struct {
procs []*nativeProcess
addTarget proc.AddTargetFunc
}
func (procgrp *processGroup) numValid() int {
n := 0
for _, p := range procgrp.procs {
if ok, _ := p.Valid(); ok {
n++
}
}
return n
}
func (procgrp *processGroup) procForThread(tid int) *nativeProcess {
for _, p := range procgrp.procs {
if p.threads[tid] != nil {
return p
}
}
return nil
}
func (procgrp *processGroup) add(p *nativeProcess, pid int, currentThread proc.Thread, path string, stopReason proc.StopReason, cmdline string) (*proc.Target, error) {
tgt, err := procgrp.addTarget(p, pid, currentThread, path, stopReason, cmdline)
if err != nil {
return nil, err
}
if tgt != nil {
procgrp.procs = append(procgrp.procs, p)
}
return tgt, nil
}
func (procgrp *processGroup) ContinueOnce(cctx *proc.ContinueOnceContext) (proc.Thread, proc.StopReason, error) {
if len(procgrp.procs) != 1 && runtime.GOOS != "linux" {
panic("not implemented")
}
if procgrp.numValid() == 0 {
return nil, proc.StopExited, proc.ErrProcessExited{Pid: procgrp.procs[0].pid}
}
for {
for _, dbp := range procgrp.procs {
if dbp.exited {
continue
}
if err := dbp.resume(); err != nil {
return nil, proc.StopUnknown, err
}
for _, th := range dbp.threads {
th.CurrentBreakpoint.Clear()
}
}
if cctx.ResumeChan != nil {
close(cctx.ResumeChan)
cctx.ResumeChan = nil
}
trapthread, err := trapWait(procgrp, -1)
if err != nil {
return nil, proc.StopUnknown, err
}
trapthread, err = procgrp.stop(cctx, trapthread)
if err != nil {
return nil, proc.StopUnknown, err
}
if trapthread != nil {
dbp := procgrp.procForThread(trapthread.ID)
dbp.memthread = trapthread
// refresh memthread for every other process
for _, p2 := range procgrp.procs {
if p2.exited || p2 == dbp {
continue
}
for _, th := range p2.threads {
p2.memthread = th
if th.SoftExc() {
break
}
}
}
return trapthread, proc.StopUnknown, nil
}
}
}
// FindBreakpoint finds the breakpoint for the given pc.
func (dbp *nativeProcess) FindBreakpoint(pc uint64, adjustPC bool) (*proc.Breakpoint, bool) {
if adjustPC {
// Check to see if address is past the breakpoint, (i.e. breakpoint was hit).
if bp, ok := dbp.breakpoints.M[pc-uint64(dbp.bi.Arch.BreakpointSize())]; ok {
return bp, true
}
}
// Directly use addr to lookup breakpoint.
if bp, ok := dbp.breakpoints.M[pc]; ok {
return bp, true
}
return nil, false
}
func (dbp *nativeProcess) initializeBasic() (string, error) {
cmdline, err := initialize(dbp)
if err != nil {
return "", err
}
if err := dbp.updateThreadList(); err != nil {
return "", err
}
return cmdline, nil
}
// initialize will ensure that all relevant information is loaded
// so the process is ready to be debugged.
func (dbp *nativeProcess) initialize(path string, debugInfoDirs []string) (*proc.TargetGroup, error) {
cmdline, err := dbp.initializeBasic()
if err != nil {
return nil, err
}
stopReason := proc.StopLaunched
if !dbp.childProcess {
stopReason = proc.StopAttached
}
procgrp := &processGroup{}
grp, addTarget := proc.NewGroup(procgrp, proc.NewTargetGroupConfig{
DebugInfoDirs: debugInfoDirs,
// We disable asyncpreempt for the following reasons:
// - on Windows asyncpreempt is incompatible with debuggers, see:
// https://github.com/golang/go/issues/36494
// - on linux/arm64 asyncpreempt can sometimes restart a sequence of
// instructions, if the sequence happens to contain a breakpoint it will
// look like the breakpoint was hit twice when it was "logically" only
// executed once.
// See: https://go-review.googlesource.com/c/go/+/208126
DisableAsyncPreempt: runtime.GOOS == "windows" || (runtime.GOOS == "linux" && runtime.GOARCH == "arm64"),
StopReason: stopReason,
CanDump: runtime.GOOS == "linux" || runtime.GOOS == "freebsd" || (runtime.GOOS == "windows" && runtime.GOARCH == "amd64"),
})
procgrp.addTarget = addTarget
tgt, err := procgrp.add(dbp, dbp.pid, dbp.memthread, path, stopReason, cmdline)
if err != nil {
return nil, err
}
if dbp.bi.Arch.Name == "arm64" {
dbp.iscgo = tgt.IsCgo()
}
return grp, nil
}
func (pt *ptraceThread) handlePtraceFuncs() {
// We must ensure here that we are running on the same thread during
// while invoking the ptrace(2) syscall. This is due to the fact that ptrace(2) expects
// all commands after PTRACE_ATTACH to come from the same thread.
runtime.LockOSThread()
// Leaving the OS thread locked currently leads to segfaults in the
// Go runtime while running on FreeBSD and OpenBSD:
// https://github.com/golang/go/issues/52394
if runtime.GOOS == "freebsd" || runtime.GOOS == "openbsd" {
defer runtime.UnlockOSThread()
}
for fn := range pt.ptraceChan {
fn()
pt.ptraceDoneChan <- nil
}
}
func (dbp *nativeProcess) execPtraceFunc(fn func()) {
dbp.ptraceThread.ptraceChan <- fn
<-dbp.ptraceThread.ptraceDoneChan
}
func (dbp *nativeProcess) postExit() {
dbp.exited = true
dbp.ptraceThread.release()
dbp.bi.Close()
if dbp.ctty != nil {
dbp.ctty.Close()
}
dbp.os.Close()
}
func (dbp *nativeProcess) writeSoftwareBreakpoint(thread *nativeThread, addr uint64) error {
_, err := thread.WriteMemory(addr, dbp.bi.Arch.BreakpointInstruction())
return err
}
func openRedirects(redirects [3]string, foreground bool) (stdin, stdout, stderr *os.File, closefn func(), err error) {
toclose := []*os.File{}
if redirects[0] != "" {
stdin, err = os.Open(redirects[0])
if err != nil {
return nil, nil, nil, nil, err
}
toclose = append(toclose, stdin)
} else if foreground {
stdin = os.Stdin
}
create := func(path string, dflt *os.File) *os.File {
if path == "" {
return dflt
}
var f *os.File
f, err = os.Create(path)
if f != nil {
toclose = append(toclose, f)
}
return f
}
stdout = create(redirects[1], os.Stdout)
if err != nil {
return nil, nil, nil, nil, err
}
stderr = create(redirects[2], os.Stderr)
if err != nil {
return nil, nil, nil, nil, err
}
closefn = func() {
for _, f := range toclose {
_ = f.Close()
}
}
return stdin, stdout, stderr, closefn, nil
}
type ptraceThread struct {
ptraceRefCnt int
ptraceChan chan func()
ptraceDoneChan chan interface{}
}
func newPtraceThread() *ptraceThread {
pt := &ptraceThread{
ptraceChan: make(chan func()),
ptraceDoneChan: make(chan interface{}),
ptraceRefCnt: 1,
}
go pt.handlePtraceFuncs()
return pt
}
func (pt *ptraceThread) acquire() *ptraceThread {
pt.ptraceRefCnt++
return pt
}
func (pt *ptraceThread) release() {
pt.ptraceRefCnt--
if pt.ptraceRefCnt == 0 {
close(pt.ptraceChan)
close(pt.ptraceDoneChan)
}
}