delve/pkg/proc/breakpoints.go
Alessandro Arzilli f3e76238e3
proc: move breakpoint condition evaluation out of backends (#2628)
* proc: move breakpoint condition evaluation out of backends

Moves breakpoint condition evaluation from the point where breakpoints
are set, inside ContinueOnce, to (*Target).Continue.

This accomplishes three things:

1. the breakpoint evaluation method needs not be exported anymore
2. breakpoint condition evaluation can be done with a full scope,
   containing a Target object, something that wasn't possible before
   because ContinueOnce doesn't have access to the Target object.
3. moves breakpoint condition evaluation out of the critical section
   where some of the threads of the target process might be still
   running.

* proc/native: handle process death during stop() on Windows

It is possible that the thread dies while we are inside the stop()
function. This results in an Access is denied error being returned by
SuspendThread being called on threads that no longer exist.

Delay the reporting the error from SuspendThread until the end of
stop() and only report it if the thread still exists at that point.

Fixes flakyness with TestIssue1101 that was exacerbated by moving
breakpoint condition evaluation outside of the backends.
2021-08-09 10:16:24 -07:00

759 lines
21 KiB
Go

package proc
import (
"debug/dwarf"
"errors"
"fmt"
"go/ast"
"go/constant"
"go/parser"
"go/token"
"reflect"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/reader"
"github.com/go-delve/delve/pkg/goversion"
"github.com/go-delve/delve/pkg/proc/internal/ebpf"
)
const (
// UnrecoveredPanic is the name given to the unrecovered panic breakpoint.
UnrecoveredPanic = "unrecovered-panic"
// FatalThrow is the name given to the breakpoint triggered when the target
// process dies because of a fatal runtime error.
FatalThrow = "runtime-fatal-throw"
unrecoveredPanicID = -1
fatalThrowID = -2
)
// Breakpoint represents a physical breakpoint. Stores information on the break
// point including the byte of data that originally was stored at that
// address.
type Breakpoint struct {
// File & line information for printing.
FunctionName string
File string
Line int
Addr uint64 // Address breakpoint is set for.
OriginalData []byte // If software breakpoint, the data we replace with breakpoint instruction.
Name string // User defined name of the breakpoint
LogicalID int // ID of the logical breakpoint that owns this physical breakpoint
WatchExpr string
WatchType WatchType
HWBreakIndex uint8 // hardware breakpoint index
// Breaklets is the list of overlapping breakpoints on this physical breakpoint.
// There can be at most one UserBreakpoint in this list but multiple internal breakpoints are allowed.
Breaklets []*Breaklet
// Breakpoint information
Tracepoint bool // Tracepoint flag
TraceReturn bool
Goroutine bool // Retrieve goroutine information
Stacktrace int // Number of stack frames to retrieve
Variables []string // Variables to evaluate
LoadArgs *LoadConfig
LoadLocals *LoadConfig
// ReturnInfo describes how to collect return variables when this
// breakpoint is hit as a return breakpoint.
returnInfo *returnBreakpointInfo
}
// Breaklet represents one of multiple breakpoints that can overlap on a
// single physical breakpoint.
type Breaklet struct {
// Kind describes whether this is a stepping breakpoint (for next'ing or
// stepping).
Kind BreakpointKind
// Cond: if not nil the breakpoint will be triggered only if evaluating Cond returns true
Cond ast.Expr
HitCount map[int]uint64 // Number of times a breakpoint has been reached in a certain goroutine
TotalHitCount uint64 // Number of times a breakpoint has been reached
// DeferReturns: when kind == NextDeferBreakpoint this breakpoint
// will also check if the caller is runtime.gopanic or if the return
// address is in the DeferReturns array.
// Next uses NextDeferBreakpoints for the breakpoint it sets on the
// deferred function, DeferReturns is populated with the
// addresses of calls to runtime.deferreturn in the current
// function. This ensures that the breakpoint on the deferred
// function only triggers on panic or on the defer call to
// the function, not when the function is called directly
DeferReturns []uint64
// HitCond: if not nil the breakpoint will be triggered only if the evaluated HitCond returns
// true with the TotalHitCount.
HitCond *struct {
Op token.Token
Val int
}
}
// BreakpointKind determines the behavior of delve when the
// breakpoint is reached.
type BreakpointKind uint16
const (
// UserBreakpoint is a user set breakpoint
UserBreakpoint BreakpointKind = (1 << iota)
// NextBreakpoint is a breakpoint set by Next, Continue
// will stop on it and delete it
NextBreakpoint
// NextDeferBreakpoint is a breakpoint set by Next on the
// first deferred function. In addition to checking their condition
// breakpoints of this kind will also check that the function has been
// called by runtime.gopanic or through runtime.deferreturn.
NextDeferBreakpoint
// StepBreakpoint is a breakpoint set by Step on a CALL instruction,
// Continue will set a new breakpoint (of NextBreakpoint kind) on the
// destination of CALL, delete this breakpoint and then continue again
StepBreakpoint
steppingMask = NextBreakpoint | NextDeferBreakpoint | StepBreakpoint
)
// WatchType is the watchpoint type
type WatchType uint8
const (
WatchRead WatchType = 1 << iota
WatchWrite
)
// Read returns true if the hardware breakpoint should trigger on memory reads.
func (wtype WatchType) Read() bool {
return wtype&WatchRead != 0
}
// Write returns true if the hardware breakpoint should trigger on memory writes.
func (wtype WatchType) Write() bool {
return wtype&WatchWrite != 0
}
// Size returns the size in bytes of the hardware breakpoint.
func (wtype WatchType) Size() int {
return int(wtype >> 4)
}
// withSize returns a new HWBreakType with the size set to the specified value
func (wtype WatchType) withSize(sz uint8) WatchType {
return WatchType((sz << 4) | uint8(wtype&0xf))
}
var ErrHWBreakUnsupported = errors.New("hardware breakpoints not implemented")
func (bp *Breakpoint) String() string {
return fmt.Sprintf("Breakpoint %d at %#v %s:%d", bp.LogicalID, bp.Addr, bp.File, bp.Line)
}
// BreakpointExistsError is returned when trying to set a breakpoint at
// an address that already has a breakpoint set for it.
type BreakpointExistsError struct {
File string
Line int
Addr uint64
}
func (bpe BreakpointExistsError) Error() string {
return fmt.Sprintf("Breakpoint exists at %s:%d at %x", bpe.File, bpe.Line, bpe.Addr)
}
// InvalidAddressError represents the result of
// attempting to set a breakpoint at an invalid address.
type InvalidAddressError struct {
Address uint64
}
func (iae InvalidAddressError) Error() string {
return fmt.Sprintf("Invalid address %#v\n", iae.Address)
}
type returnBreakpointInfo struct {
retFrameCond ast.Expr
fn *Function
frameOffset int64
spOffset int64
}
// CheckCondition evaluates bp's condition on thread.
func (bp *Breakpoint) checkCondition(tgt *Target, thread Thread, bpstate *BreakpointState) {
*bpstate = BreakpointState{Breakpoint: bp, Active: false, Stepping: false, SteppingInto: false, CondError: nil}
for _, breaklet := range bp.Breaklets {
bpstate.checkCond(tgt, breaklet, thread)
}
}
func (bpstate *BreakpointState) checkCond(tgt *Target, breaklet *Breaklet, thread Thread) {
var condErr error
active := true
if breaklet.Cond != nil {
active, condErr = evalBreakpointCondition(tgt, thread, breaklet.Cond)
}
if condErr != nil && bpstate.CondError == nil {
bpstate.CondError = condErr
}
if !active {
return
}
switch breaklet.Kind {
case UserBreakpoint:
if g, err := GetG(thread); err == nil {
breaklet.HitCount[g.ID]++
}
breaklet.TotalHitCount++
active = checkHitCond(breaklet)
case StepBreakpoint, NextBreakpoint, NextDeferBreakpoint:
nextDeferOk := true
if breaklet.Kind&NextDeferBreakpoint != 0 {
var err error
frames, err := ThreadStacktrace(thread, 2)
if err == nil {
nextDeferOk, _ = isPanicCall(frames)
if !nextDeferOk {
nextDeferOk, _ = isDeferReturnCall(frames, breaklet.DeferReturns)
}
}
}
active = active && nextDeferOk
if active {
bpstate.Stepping = true
if breaklet.Kind == StepBreakpoint {
bpstate.SteppingInto = true
}
}
default:
bpstate.CondError = fmt.Errorf("internal error unknown breakpoint kind %v", breaklet.Kind)
}
if active {
bpstate.Active = true
}
}
// checkHitCond evaluates bp's hit condition on thread.
func checkHitCond(breaklet *Breaklet) bool {
if breaklet.HitCond == nil {
return true
}
// Evaluate the breakpoint condition.
switch breaklet.HitCond.Op {
case token.EQL:
return int(breaklet.TotalHitCount) == breaklet.HitCond.Val
case token.NEQ:
return int(breaklet.TotalHitCount) != breaklet.HitCond.Val
case token.GTR:
return int(breaklet.TotalHitCount) > breaklet.HitCond.Val
case token.LSS:
return int(breaklet.TotalHitCount) < breaklet.HitCond.Val
case token.GEQ:
return int(breaklet.TotalHitCount) >= breaklet.HitCond.Val
case token.LEQ:
return int(breaklet.TotalHitCount) <= breaklet.HitCond.Val
case token.REM:
return int(breaklet.TotalHitCount)%breaklet.HitCond.Val == 0
}
return false
}
func isPanicCall(frames []Stackframe) (bool, int) {
// In Go prior to 1.17 the call stack for a panic is:
// 0. deferred function call
// 1. runtime.callN
// 2. runtime.gopanic
// in Go after 1.17 it is either:
// 0. deferred function call
// 1. deferred call wrapper
// 2. runtime.gopanic
// or:
// 0. deferred function call
// 1. runtime.gopanic
if len(frames) >= 3 && frames[2].Current.Fn != nil && frames[2].Current.Fn.Name == "runtime.gopanic" {
return true, 2
}
if len(frames) >= 2 && frames[1].Current.Fn != nil && frames[1].Current.Fn.Name == "runtime.gopanic" {
return true, 1
}
return false, 0
}
func isDeferReturnCall(frames []Stackframe, deferReturns []uint64) (bool, uint64) {
if len(frames) >= 1 {
for _, pc := range deferReturns {
if frames[0].Ret == pc {
return true, pc
}
}
}
return false, 0
}
// IsStepping returns true if bp is an stepping breakpoint.
// User-set breakpoints can overlap with stepping breakpoints, in that case
// both IsUser and IsStepping will be true.
func (bp *Breakpoint) IsStepping() bool {
for _, breaklet := range bp.Breaklets {
if breaklet.Kind&steppingMask != 0 {
return true
}
}
return false
}
// IsUser returns true if bp is a user-set breakpoint.
// User-set breakpoints can overlap with stepping breakpoints, in that case
// both IsUser and IsStepping will be true.
func (bp *Breakpoint) IsUser() bool {
for _, breaklet := range bp.Breaklets {
if breaklet.Kind == UserBreakpoint {
return true
}
}
return false
}
// UserBreaklet returns the user breaklet for this breakpoint, or nil if
// none exist.
func (bp *Breakpoint) UserBreaklet() *Breaklet {
for _, breaklet := range bp.Breaklets {
if breaklet.Kind == UserBreakpoint {
return breaklet
}
}
return nil
}
func evalBreakpointCondition(tgt *Target, thread Thread, cond ast.Expr) (bool, error) {
if cond == nil {
return true, nil
}
scope, err := GoroutineScope(tgt, thread)
if err != nil {
scope, err = ThreadScope(tgt, thread)
if err != nil {
return true, err
}
}
v, err := scope.evalAST(cond)
if err != nil {
return true, fmt.Errorf("error evaluating expression: %v", err)
}
if v.Kind != reflect.Bool {
return true, errors.New("condition expression not boolean")
}
v.loadValue(loadFullValue)
if v.Unreadable != nil {
return true, fmt.Errorf("condition expression unreadable: %v", v.Unreadable)
}
return constant.BoolVal(v.Value), nil
}
// NoBreakpointError is returned when trying to
// clear a breakpoint that does not exist.
type NoBreakpointError struct {
Addr uint64
}
func (nbp NoBreakpointError) Error() string {
return fmt.Sprintf("no breakpoint at %#v", nbp.Addr)
}
// BreakpointMap represents an (address, breakpoint) map.
type BreakpointMap struct {
M map[uint64]*Breakpoint
breakpointIDCounter int
internalBreakpointIDCounter int
}
// NewBreakpointMap creates a new BreakpointMap.
func NewBreakpointMap() BreakpointMap {
return BreakpointMap{
M: make(map[uint64]*Breakpoint),
}
}
// SetBreakpoint sets a breakpoint at addr, and stores it in the process wide
// break point table.
func (t *Target) SetBreakpoint(addr uint64, kind BreakpointKind, cond ast.Expr) (*Breakpoint, error) {
return t.setBreakpointInternal(addr, kind, 0, cond)
}
func (t *Target) SetEBPFTracepoint(fnName string) error {
if !t.proc.SupportsBPF() {
return errors.New("eBPF is not supported")
}
var args []ebpf.UProbeArgMap
fn, ok := t.BinInfo().LookupFunc[fnName]
if !ok {
return fmt.Errorf("could not find function %s", fnName)
}
dwarfTree, err := fn.cu.image.getDwarfTree(fn.offset)
if err != nil {
return err
}
variablesFlags := reader.VariablesOnlyVisible
if t.BinInfo().Producer() != "" && goversion.ProducerAfterOrEqual(t.BinInfo().Producer(), 1, 15) {
variablesFlags |= reader.VariablesTrustDeclLine
}
_, l, _ := t.BinInfo().PCToLine(fn.Entry)
varEntries := reader.Variables(dwarfTree, fn.Entry, l, variablesFlags)
for _, entry := range varEntries {
isret, _ := entry.Val(dwarf.AttrVarParam).(bool)
if isret {
continue
}
_, dt, err := readVarEntry(entry.Tree, fn.cu.image)
if err != nil {
return err
}
offset, pieces, _, err := t.BinInfo().Location(entry, dwarf.AttrLocation, fn.Entry, op.DwarfRegisters{}, nil)
if err != nil {
return err
}
paramPieces := make([]int, 0, len(pieces))
for _, piece := range pieces {
if piece.Kind == op.RegPiece {
paramPieces = append(paramPieces, int(piece.Val))
}
}
offset += int64(t.BinInfo().Arch.PtrSize())
args = append(args, ebpf.UProbeArgMap{Offset: offset, Size: dt.Size(), Kind: dt.Common().ReflectKind, Pieces: paramPieces, InReg: len(pieces) > 0})
}
t.proc.SetUProbe(fnName, args)
return nil
}
// SetWatchpoint sets a data breakpoint at addr and stores it in the
// process wide break point table.
func (t *Target) SetWatchpoint(scope *EvalScope, expr string, wtype WatchType, cond ast.Expr) (*Breakpoint, error) {
if (wtype&WatchWrite == 0) && (wtype&WatchRead == 0) {
return nil, errors.New("at least one of read and write must be set for watchpoint")
}
n, err := parser.ParseExpr(expr)
if err != nil {
return nil, err
}
xv, err := scope.evalAST(n)
if err != nil {
return nil, err
}
if xv.Addr == 0 || xv.Flags&VariableFakeAddress != 0 || xv.DwarfType == nil {
return nil, fmt.Errorf("can not watch %q", expr)
}
if xv.Unreadable != nil {
return nil, fmt.Errorf("expression %q is unreadable: %v", expr, xv.Unreadable)
}
if xv.Kind == reflect.UnsafePointer || xv.Kind == reflect.Invalid {
return nil, fmt.Errorf("can not watch variable of type %s", xv.Kind.String())
}
sz := xv.DwarfType.Size()
if sz <= 0 || sz > int64(t.BinInfo().Arch.PtrSize()) {
//TODO(aarzilli): it is reasonable to expect to be able to watch string
//and interface variables and we could support it by watching certain
//member fields here.
return nil, fmt.Errorf("can not watch variable of type %s", xv.DwarfType.String())
}
if xv.Addr >= scope.g.stack.lo && xv.Addr < scope.g.stack.hi {
//TODO(aarzilli): support watching stack variables
return nil, errors.New("can not watch stack allocated variable")
}
bp, err := t.setBreakpointInternal(xv.Addr, UserBreakpoint, wtype.withSize(uint8(sz)), cond)
if bp != nil {
bp.WatchExpr = expr
}
return bp, err
}
func (t *Target) setBreakpointInternal(addr uint64, kind BreakpointKind, wtype WatchType, cond ast.Expr) (*Breakpoint, error) {
if valid, err := t.Valid(); !valid {
return nil, err
}
bpmap := t.Breakpoints()
newBreaklet := &Breaklet{Kind: kind, Cond: cond}
if kind == UserBreakpoint {
newBreaklet.HitCount = map[int]uint64{}
}
if bp, ok := bpmap.M[addr]; ok {
if !bp.canOverlap(kind) {
return bp, BreakpointExistsError{bp.File, bp.Line, bp.Addr}
}
bp.Breaklets = append(bp.Breaklets, newBreaklet)
return bp, nil
}
f, l, fn := t.BinInfo().PCToLine(uint64(addr))
fnName := ""
if fn != nil {
fnName = fn.Name
}
hwidx := uint8(0)
if wtype != 0 {
m := make(map[uint8]bool)
for _, bp := range bpmap.M {
if bp.WatchType != 0 {
m[bp.HWBreakIndex] = true
}
}
for hwidx = 0; true; hwidx++ {
if !m[hwidx] {
break
}
}
}
newBreakpoint := &Breakpoint{
FunctionName: fnName,
WatchType: wtype,
HWBreakIndex: hwidx,
File: f,
Line: l,
Addr: addr,
}
err := t.proc.WriteBreakpoint(newBreakpoint)
if err != nil {
return nil, err
}
if kind != UserBreakpoint {
bpmap.internalBreakpointIDCounter++
newBreakpoint.LogicalID = bpmap.internalBreakpointIDCounter
} else {
bpmap.breakpointIDCounter++
newBreakpoint.LogicalID = bpmap.breakpointIDCounter
}
newBreakpoint.Breaklets = append(newBreakpoint.Breaklets, newBreaklet)
bpmap.M[addr] = newBreakpoint
return newBreakpoint, nil
}
// SetBreakpointWithID creates a breakpoint at addr, with the specified logical ID.
func (t *Target) SetBreakpointWithID(id int, addr uint64) (*Breakpoint, error) {
bpmap := t.Breakpoints()
bp, err := t.SetBreakpoint(addr, UserBreakpoint, nil)
if err == nil {
bp.LogicalID = id
bpmap.breakpointIDCounter--
}
return bp, err
}
// canOverlap returns true if a breakpoint of kind can be overlapped to the
// already existing breaklets in bp.
// At most one user breakpoint can be set but multiple internal breakpoints are allowed.
// All other internal breakpoints are allowed to overlap freely.
func (bp *Breakpoint) canOverlap(kind BreakpointKind) bool {
if kind == UserBreakpoint {
return !bp.IsUser()
}
return true
}
// ClearBreakpoint clears the breakpoint at addr.
func (t *Target) ClearBreakpoint(addr uint64) (*Breakpoint, error) {
if valid, err := t.Valid(); !valid {
return nil, err
}
bp, ok := t.Breakpoints().M[addr]
if !ok {
return nil, NoBreakpointError{Addr: addr}
}
for i := range bp.Breaklets {
if bp.Breaklets[i].Kind == UserBreakpoint {
bp.Breaklets[i] = nil
}
}
_, err := t.finishClearBreakpoint(bp)
if err != nil {
return nil, err
}
return bp, nil
}
// ClearInternalBreakpoints removes all stepping breakpoints from the map,
// calling clearBreakpoint on each one.
func (t *Target) ClearSteppingBreakpoints() error {
bpmap := t.Breakpoints()
threads := t.ThreadList()
for _, bp := range bpmap.M {
for i := range bp.Breaklets {
if bp.Breaklets[i].Kind&steppingMask != 0 {
bp.Breaklets[i] = nil
}
}
cleared, err := t.finishClearBreakpoint(bp)
if err != nil {
return err
}
if cleared {
for _, thread := range threads {
if thread.Breakpoint().Breakpoint == bp {
thread.Breakpoint().Clear()
}
}
}
}
return nil
}
// finishClearBreakpoint clears nil breaklets from the breaklet list of bp
// and if it is empty erases the breakpoint.
// Returns true if the breakpoint was deleted
func (t *Target) finishClearBreakpoint(bp *Breakpoint) (bool, error) {
oldBreaklets := bp.Breaklets
bp.Breaklets = bp.Breaklets[:0]
for _, breaklet := range oldBreaklets {
if breaklet != nil {
bp.Breaklets = append(bp.Breaklets, breaklet)
}
}
if len(bp.Breaklets) > 0 {
return false, nil
}
if err := t.proc.EraseBreakpoint(bp); err != nil {
return false, err
}
delete(t.Breakpoints().M, bp.Addr)
return true, nil
}
// HasSteppingBreakpoints returns true if bpmap has at least one stepping
// breakpoint set.
func (bpmap *BreakpointMap) HasSteppingBreakpoints() bool {
for _, bp := range bpmap.M {
if bp.IsStepping() {
return true
}
}
return false
}
// HasHWBreakpoints returns true if there are hardware breakpoints.
func (bpmap *BreakpointMap) HasHWBreakpoints() bool {
for _, bp := range bpmap.M {
if bp.WatchType != 0 {
return true
}
}
return false
}
// BreakpointState describes the state of a breakpoint in a thread.
type BreakpointState struct {
*Breakpoint
// Active is true if the condition of any breaklet is met.
Active bool
// Stepping is true if one of the active breaklets is a stepping
// breakpoint.
Stepping bool
// SteppingInto is true if one of the active stepping breaklets has Kind ==
// StepBreakpoint.
SteppingInto bool
// CondError contains any error encountered while evaluating the
// breakpoint's condition.
CondError error
}
// Clear zeros the struct.
func (bpstate *BreakpointState) Clear() {
bpstate.Breakpoint = nil
bpstate.Active = false
bpstate.Stepping = false
bpstate.SteppingInto = false
bpstate.CondError = nil
}
func (bpstate *BreakpointState) String() string {
s := bpstate.Breakpoint.String()
if bpstate.Active {
s += " active"
}
if bpstate.Stepping {
s += " stepping"
}
return s
}
func configureReturnBreakpoint(bi *BinaryInfo, bp *Breakpoint, topframe *Stackframe, retFrameCond ast.Expr) {
if topframe.Current.Fn == nil {
return
}
bp.returnInfo = &returnBreakpointInfo{
retFrameCond: retFrameCond,
fn: topframe.Current.Fn,
frameOffset: topframe.FrameOffset(),
spOffset: topframe.FrameOffset() - int64(bi.Arch.PtrSize()), // must be the value that SP had at the entry point of the function
}
}
func (rbpi *returnBreakpointInfo) Collect(t *Target, thread Thread) []*Variable {
if rbpi == nil {
return nil
}
g, err := GetG(thread)
if err != nil {
return returnInfoError("could not get g", err, thread.ProcessMemory())
}
scope, err := GoroutineScope(t, thread)
if err != nil {
return returnInfoError("could not get scope", err, thread.ProcessMemory())
}
v, err := scope.evalAST(rbpi.retFrameCond)
if err != nil || v.Unreadable != nil || v.Kind != reflect.Bool {
// This condition was evaluated as part of the breakpoint condition
// evaluation, if the errors happen they will be reported as part of the
// condition errors.
return nil
}
if !constant.BoolVal(v.Value) {
// Breakpoint not hit as a return breakpoint.
return nil
}
oldFrameOffset := rbpi.frameOffset + int64(g.stack.hi)
oldSP := uint64(rbpi.spOffset + int64(g.stack.hi))
err = fakeFunctionEntryScope(scope, rbpi.fn, oldFrameOffset, oldSP)
if err != nil {
return returnInfoError("could not read function entry", err, thread.ProcessMemory())
}
vars, err := scope.Locals()
if err != nil {
return returnInfoError("could not evaluate return variables", err, thread.ProcessMemory())
}
vars = filterVariables(vars, func(v *Variable) bool {
return (v.Flags & VariableReturnArgument) != 0
})
return vars
}
func returnInfoError(descr string, err error, mem MemoryReadWriter) []*Variable {
v := newConstant(constant.MakeString(fmt.Sprintf("%s: %v", descr, err.Error())), mem)
v.Name = "return value read error"
return []*Variable{v}
}