delve/pkg/proc/arm64_arch.go

295 lines
7.8 KiB
Go
Raw Normal View History

package proc
import (
"encoding/binary"
"github.com/go-delve/delve/pkg/dwarf/frame"
"github.com/go-delve/delve/pkg/dwarf/op"
"golang.org/x/arch/arm64/arm64asm"
)
// ARM64 represents the ARM64 CPU architecture.
type ARM64 struct {
gStructOffset uint64
goos string
// crosscall2fn is the DIE of crosscall2, a function used by the go runtime
// to call C functions. This function in go 1.9 (and previous versions) had
// a bad frame descriptor which needs to be fixed to generate good stack
// traces.
crosscall2fn *Function
// sigreturnfn is the DIE of runtime.sigreturn, the return trampoline for
// the signal handler. See comment in FixFrameUnwindContext for a
// description of why this is needed.
sigreturnfn *Function
}
const (
arm64DwarfIPRegNum uint64 = 32
arm64DwarfSPRegNum uint64 = 31
arm64DwarfBPRegNum uint64 = 29
)
var arm64BreakInstruction = []byte{0x0, 0x0, 0x20, 0xd4}
// ARM64Arch returns an initialized ARM64
// struct.
func ARM64Arch(goos string) *ARM64 {
return &ARM64{
goos: goos,
}
}
// PtrSize returns the size of a pointer
// on this architecture.
func (a *ARM64) PtrSize() int {
return 8
}
// MaxInstructionLength returns the maximum lenght of an instruction.
func (a *ARM64) MaxInstructionLength() int {
return 4
}
// BreakpointInstruction returns the Breakpoint
// instruction for this architecture.
func (a *ARM64) BreakpointInstruction() []byte {
return arm64BreakInstruction
}
// BreakInstrMovesPC returns whether the
// breakpoint instruction will change the value
// of PC after being executed
func (a *ARM64) BreakInstrMovesPC() bool {
return false
}
// BreakpointSize returns the size of the
// breakpoint instruction on this architecture.
func (a *ARM64) BreakpointSize() int {
return len(arm64BreakInstruction)
}
// Always return false for now.
func (a *ARM64) DerefTLS() bool {
return false
}
// FixFrameUnwindContext adds default architecture rules to fctxt or returns
// the default frame unwind context if fctxt is nil.
func (a *ARM64) FixFrameUnwindContext(fctxt *frame.FrameContext, pc uint64, bi *BinaryInfo) *frame.FrameContext {
if a.sigreturnfn == nil {
a.sigreturnfn = bi.LookupFunc["runtime.sigreturn"]
}
if fctxt == nil || (a.sigreturnfn != nil && pc >= a.sigreturnfn.Entry && pc < a.sigreturnfn.End) {
// When there's no frame descriptor entry use BP (the frame pointer) instead
// - return register is [bp + a.PtrSize()] (i.e. [cfa-a.PtrSize()])
// - cfa is bp + a.PtrSize()*2
// - bp is [bp] (i.e. [cfa-a.PtrSize()*2])
// - sp is cfa
// When the signal handler runs it will move the execution to the signal
// handling stack (installed using the sigaltstack system call).
// This isn't a proper stack switch: the pointer to g in TLS will still
// refer to whatever g was executing on that thread before the signal was
// received.
// Since go did not execute a stack switch the previous value of sp, pc
// and bp is not saved inside g.sched, as it normally would.
// The only way to recover is to either read sp/pc from the signal context
// parameter (the ucontext_t* parameter) or to unconditionally follow the
// frame pointer when we get to runtime.sigreturn (which is what we do
// here).
return &frame.FrameContext{
RetAddrReg: arm64DwarfIPRegNum,
Regs: map[uint64]frame.DWRule{
arm64DwarfIPRegNum: frame.DWRule{
Rule: frame.RuleOffset,
Offset: int64(-a.PtrSize()),
},
arm64DwarfBPRegNum: frame.DWRule{
Rule: frame.RuleOffset,
Offset: int64(-2 * a.PtrSize()),
},
arm64DwarfSPRegNum: frame.DWRule{
Rule: frame.RuleValOffset,
Offset: 0,
},
},
CFA: frame.DWRule{
Rule: frame.RuleCFA,
Reg: arm64DwarfBPRegNum,
Offset: int64(2 * a.PtrSize()),
},
}
}
if a.crosscall2fn == nil {
a.crosscall2fn = bi.LookupFunc["crosscall2"]
}
if a.crosscall2fn != nil && pc >= a.crosscall2fn.Entry && pc < a.crosscall2fn.End {
rule := fctxt.CFA
if rule.Offset == crosscall2SPOffsetBad {
switch a.goos {
case "windows":
rule.Offset += crosscall2SPOffsetWindows
default:
rule.Offset += crosscall2SPOffsetNonWindows
}
}
fctxt.CFA = rule
}
// We assume that RBP is the frame pointer and we want to keep it updated,
// so that we can use it to unwind the stack even when we encounter frames
// without descriptor entries.
// If there isn't a rule already we emit one.
if fctxt.Regs[arm64DwarfBPRegNum].Rule == frame.RuleUndefined {
fctxt.Regs[arm64DwarfBPRegNum] = frame.DWRule{
Rule: frame.RuleFramePointer,
Reg: arm64DwarfBPRegNum,
Offset: 0,
}
}
return fctxt
}
func (a *ARM64) RegSize(regnum uint64) int {
// fp registers
if regnum >= 64 && regnum <= 95 {
return 16
}
return 8 // general registers
}
// The mapping between hardware registers and DWARF registers is specified
// in the DWARF for the ARM® Architecture page 7,
// Table 1
// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0040b/IHI0040B_aadwarf.pdf
var arm64DwarfToHardware = map[int]arm64asm.Reg{
0: arm64asm.X0,
1: arm64asm.X1,
2: arm64asm.X2,
3: arm64asm.X3,
4: arm64asm.X4,
5: arm64asm.X5,
6: arm64asm.X6,
7: arm64asm.X7,
8: arm64asm.X8,
9: arm64asm.X9,
10: arm64asm.X10,
11: arm64asm.X11,
12: arm64asm.X12,
13: arm64asm.X13,
14: arm64asm.X14,
15: arm64asm.X15,
16: arm64asm.X16,
17: arm64asm.X17,
18: arm64asm.X18,
19: arm64asm.X19,
20: arm64asm.X20,
21: arm64asm.X21,
22: arm64asm.X22,
23: arm64asm.X23,
24: arm64asm.X24,
25: arm64asm.X25,
26: arm64asm.X26,
27: arm64asm.X27,
28: arm64asm.X28,
29: arm64asm.X29,
30: arm64asm.X30,
31: arm64asm.SP,
64: arm64asm.V0,
65: arm64asm.V1,
66: arm64asm.V2,
67: arm64asm.V3,
68: arm64asm.V4,
69: arm64asm.V5,
70: arm64asm.V6,
71: arm64asm.V7,
72: arm64asm.V8,
73: arm64asm.V9,
74: arm64asm.V10,
75: arm64asm.V11,
76: arm64asm.V12,
77: arm64asm.V13,
78: arm64asm.V14,
79: arm64asm.V15,
80: arm64asm.V16,
81: arm64asm.V17,
82: arm64asm.V18,
83: arm64asm.V19,
84: arm64asm.V20,
85: arm64asm.V21,
86: arm64asm.V22,
87: arm64asm.V23,
88: arm64asm.V24,
89: arm64asm.V25,
90: arm64asm.V26,
91: arm64asm.V27,
92: arm64asm.V28,
93: arm64asm.V29,
94: arm64asm.V30,
95: arm64asm.V31,
}
func maxArm64DwarfRegister() int {
max := int(arm64DwarfIPRegNum)
for i := range arm64DwarfToHardware {
if i > max {
max = i
}
}
return max
}
// RegistersToDwarfRegisters converts hardware registers to the format used
// by the DWARF expression interpreter.
func (a *ARM64) RegistersToDwarfRegisters(staticBase uint64, regs Registers) op.DwarfRegisters {
dregs := make([]*op.DwarfRegister, maxArm64DwarfRegister()+1)
dregs[arm64DwarfIPRegNum] = op.DwarfRegisterFromUint64(regs.PC())
dregs[arm64DwarfSPRegNum] = op.DwarfRegisterFromUint64(regs.SP())
dregs[arm64DwarfBPRegNum] = op.DwarfRegisterFromUint64(regs.BP())
for dwarfReg, asmReg := range arm64DwarfToHardware {
v, err := regs.Get(int(asmReg))
if err == nil {
dregs[dwarfReg] = op.DwarfRegisterFromUint64(v)
}
}
return op.DwarfRegisters{
StaticBase: staticBase,
Regs: dregs,
ByteOrder: binary.LittleEndian,
PCRegNum: arm64DwarfIPRegNum,
SPRegNum: arm64DwarfSPRegNum,
BPRegNum: arm64DwarfBPRegNum,
}
}
// AddrAndStackRegsToDwarfRegisters returns DWARF registers from the passed in
// PC, SP, and BP registers in the format used by the DWARF expression interpreter.
func (a *ARM64) AddrAndStackRegsToDwarfRegisters(staticBase, pc, sp, bp uint64) op.DwarfRegisters {
dregs := make([]*op.DwarfRegister, arm64DwarfIPRegNum+1)
dregs[arm64DwarfIPRegNum] = op.DwarfRegisterFromUint64(pc)
dregs[arm64DwarfSPRegNum] = op.DwarfRegisterFromUint64(sp)
dregs[arm64DwarfBPRegNum] = op.DwarfRegisterFromUint64(bp)
return op.DwarfRegisters{
StaticBase: staticBase,
Regs: dregs,
ByteOrder: binary.LittleEndian,
PCRegNum: arm64DwarfIPRegNum,
SPRegNum: arm64DwarfSPRegNum,
BPRegNum: arm64DwarfBPRegNum,
}
}