Changes implementations of proc.Registers interface and the
op.DwarfRegisters struct so that floating point registers can be loaded
only when they are needed.
Removes the floatingPoint parameter from proc.Thread.Registers.
This accomplishes three things:
1. it simplifies the proc.Thread.Registers interface
2. it makes it impossible to accidentally create a broken set of saved
registers or of op.DwarfRegisters by accidentally calling
Registers(false)
3. it improves general performance of Delve by avoiding to load
floating point registers as much as possible
Floating point registers are loaded under two circumstances:
1. When the Slice method is called with floatingPoint == true
2. When the Copy method is called
Benchmark before:
BenchmarkConditionalBreakpoints-4 1 4327350142 ns/op
Benchmark after:
BenchmarkConditionalBreakpoints-4 1 3852642917 ns/op
Updates #1549
On linux platform, we simply treated `/proc/$pid/exe` as the
executable of targeting process when doing `dlv attach`. The
`/proc/$pid/exe` is a symbol link of the real executable file.
Delve couldn't find the corrsponding external debug file based on the
symbol link:
```
could not attach to pid $pid: could not open debug info
```
The fix is to evaluate the symbol links to the actual executable path.
The process could quit while we are inside stop, we should report the
error otherwise the following code will try to send on the closed
ptrace channel.
Fixes a sporadic error in TestIssue1101.
This flag allows users on UNIX systems to set the tty for the program
being debugged by Delve. This is useful for debugging command line
applications which need access to their own TTY, and also for
controlling the output of the debugged programs so that IDEs may open a
dedicated terminal to show the output for the process.
* *: Fix go vet struct complaints
* *: Fix struct vet issue on linux
* *: Ignore proc/native in go vet check
We have to do some unsafe pointer manipulation that will never make go
vet happy within the proc/native package. Ignore it for runs of go vet.
* proc: move defer breakpoint code into a function
Moves the code that sets a breakpoint on the first deferred function,
used by both next and StepOut, to its function.
* proc: implement reverse step/next/stepout
When the direction of execution is reversed (on a recording) Step, Next and
StepOut will behave similarly to their forward version. However there are
some subtle interactions between their behavior, prologue skipping, deferred
calls and normal calls. Specifically:
- when stepping backwards we need to set a breakpoint on the first
instruction after each CALL instruction, once this breakpoint is reached we
need to execute a single StepInstruction operation to reverse step into the
CALL.
- to insure that the prologue is skipped reverse next needs to check if it
is on the first instruction after the prologue, and if it is behave like
reverse stepout.
- there is no reason to set breakpoints on deferred calls when reverse
nexting or reverse stepping out, they will never be hit.
- reverse step out should generally place its breakpoint on the CALL
instruction that created the current stack frame (which will be the CALL
instruction immediately preceding the instruction at the return address).
- reverse step out needs to treat panic calls and deferreturn calls
specially.
* service,terminal: implement reverse step, next, stepout
* proc,proc/*: move SelectedGoroutine to proc.Target, remove PostInitializationSetup
moves SelectedGoroutine, SwitchThread and SwitchGoroutine to
proc.Target, merges PostInitializationSetup with NewTarget.
* proc,proc/*: add StopReason field to Target
Adds a StopReason field to the Target object describing why the target
process is currently stopped. This will be useful for the DAP server
(which needs to report this reason in one of its requests) as well as
making pull request #1785 (reverse step) conformant to the new
architecture.
* proc: collect NewTarget arguments into a struct
Implement debugging function for 386 on linux with reference to AMD64.
There are a few remaining problems that need to be solved in another time.
1. The stacktrace of cgo are not exactly as expected.
2. Not implement `core` for now.
3. Not implement `call` for now. Can't not find `runtime·debugCallV1` or
similar function in $GOROOT/src/runtime/asm_386.s.
Update #20
* proc/native/linux: only set breakpoints on threads that receive SIGTRAP
* proc/native/linux: do not call (*Thread).Stopped inside (*Process).stop
(*Thread).Stopped is slow because it needs to open, read and parse a
file in /proc, we don't actually need to do that, we can just rely on
the value of Thread.os.running.
Benchmark before:
BenchmarkConditionalBreakpoints-4 1 12476166303 ns/op
Benchmark after:
BenchmarkConditionalBreakpoints-4 1 10403533675 ns/op
Conditional breakpoint evaluation: 1.24ms -> 1ms
Updates #1549
This change adds `ProcessVmRead` and `ProcessVmWrite` wrappers around
the syscalls `process_vm_readv` and `process_vm_writev`, available since
Linux 3.2. These follow the same permission model as `ptrace`, but they
don't actually require being attached, which means they can be called
directly from any thread in the debugger. They also use `iovec` to write
entire blocks at once, rather than having to peek/poke each `uintptr`.
These wrappers are used in `Thread.ReadMemory` and `WriteMemory`, still
falling back to `ptrace` if that fails for any reason. Notably,
`process_vm_writev` respects memory protection, so it can't modify
read-only memory like `ptrace`. This frequently occurs when writing
breakpoints in read-only `.text`, so to avoid a lot of wasted `EFAULT`
calls, we only try `process_vm_writev` for larger writes.
As we rearrange the code and the Go compiler changes the error message
returned by the compiler on unsupported architectures will change too,
making it un-googlable. Since the error message tends to be rather
obscure too this regularly confuses newbies.
This is an effort to make the error message for unsupported GOOS/GOARCH
combinations the same across all unsupported combinations and to make
it more user friendly.
Directories containing Go source code are supposed to contain a single
package. This property happens to be checked by cmd/go itself so it
will happen even before the syntax is fully checked and therefore has a
high probability of being the first (and only) error message being
print.
Here we take advantage of this by adding to the pkg/proc/native
directory a file with a bad package line that only gets compiled in on
unsupported GOOS/GOARCH combinations.
At present the error message for compiling Delve on unsupported systems
will be:
service/debugger/debugger.go:21:2: found packages native (proc.go) and your_operating_system_and_architecture_combination_is_not_supported_by_delve (support_sentinel.go) in $PATH_TO_DELVE/pkg/proc/native
A significant amount of time is spent generating the string
representation for the proc.Registers object of each thread, since this
field is rarely used (only when the Registers API is called) it should
be generated on demand.
Also by changing the internal representation of proc.Register to be
closer to that of op.DwarfRegister it will help us implement #1838
(when Delve will need to be able to display the registers of an
internal frame, which we currently represent using op.DwarfRegister
objects).
Benchmark before:
BenchmarkConditionalBreakpoints-4 1 22292554301 ns/op
Benchmark after:
BenchmarkConditionalBreakpoints-4 1 17326345671 ns/op
Reduces conditional breakpoint latency from 2.2ms to 1.7ms.
Updates #1549, #1838
* tests: misc test fixes for go1.14
- math.go is now ambiguous due to changes to the go runtime so specify
that we mean our own math.go in _fixtures
- go list -m requires vendor-mode to be disabled so pass '-mod=' to it
in case user has GOFLAGS=-mod=vendor
- update version of go/packages, required to work with go 1.14 (and
executed go mod vendor)
- Increased goroutine migration in one development version of Go 1.14
revealed a problem with TestCheckpoints in command_test.go and
rr_test.go. The tests were always wrong because Restart(checkpoint)
doesn't change the current thread but we can't assume that when the
checkpoint was taken the current goroutine was running on the same
thread.
* goversion: update maximum supported version
* Makefile: disable testing lldb-server backend on linux with Go 1.14
There seems to be some incompatibility with lldb-server version 6.0.0
on linux and Go 1.14.
* proc/gdbserial: better handling of signals
- if multiple signals are received simultaneously propagate all of them to the
target threads instead of only one.
- debugserver will drop an interrupt request if a target thread simultaneously
receives a signal, handle this situation.
* dwarf/line: normalize backslashes for windows executables
Starting with Go 1.14 the compiler sometimes emits backslashes as well
as forward slashes in debug_line, normalize everything to / for
conformity with the behavior of previous versions.
* proc/native: partial support for Windows async preempt mechanism
See https://github.com/golang/go/issues/36494 for a description of why
full support for 1.14 under windows is problematic.
* proc/native: disable Go 1.14 async preemption on Windows
See https://github.com/golang/go/issues/36494
* pkg/proc: Introduce Target
* pkg/proc: Remove Common.fncallEnabled
Realistically we only block it on recorded backends.
* pkg/proc: Move fncallForG to Target
* pkg/proc: Remove CommonProcess
Remove final bit of functionality stored in CommonProcess and move it to
*Target.
* pkg/proc: Add SupportsFunctionCall to Target
Specifically, make sure that both DebugActiveProcess and
WaitForDebugEvent Windows APIs are executed on the same thread.
Otherwise WaitForDebugEvent fails with ERROR_INVALID_HANDLE as per its
documentation
https://docs.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-waitfordebugevent
'... Only the thread that created the process being debugged can call
WaitForDebugEvent. ...'
Fixes#1825
When attaching to a process in linux ElfUpdateSharedObjects will be
called for the first time during the call to updateThreadList,
unfortunately it won't do anything because the dynamic section of the
base elf executable needs to have been read first and that's done when
we initialize the BinaryInfo object (which happens later during the
call to initialize).
arm64 use hardware breakpoint, and it will not set PC to the next instruction like amd64. Let adjustPC always fasle in arm64, in case of infinite loop.
* delve now can be built to arm64-arch and running on linux-arm64 OS.
* arm64 general-purpose registers have completed.
* arm64 disasm has completed.
Co-authored-by: tykcd996 <tang.yuke@zte.com.cn>
Co-authored-by: hengwu0 <wu.heng@zte.com.cn>
As proc/native is arch related, it should move some functions to arch-relate file. And this patch can help us to separate the architecture code, make code tidy. So that the merge of arm64 code later will not cause chaos.(#118)
* proc/linux: do not route signals to threads while stopping
While we are trying to stop the process we should not route signals
sent to threads because that will result in threads being resumed.
Also keep better track of which threads are stopped.
This fixes an incompatibility with Go 1.14, which sends a lot of
signals to its threads to implement non-cooperative preemption,
resulting in Delve hanging waiting for an already-stopped thread to
stop.
In principle however this bug has nothing to do with Go 1.14 and could
manifest in any instance of high signal pressure.
* Makefile: discard stderr of "go list"
In module mode "go" will print messages about downloading modules to
stderr, we shouldn't confuse them for the real command output.
Fixes a case of breakpoint confusion on resume caused by having two
breakpoints one byte apart. This bug can cause the target program to
resume execution a single byte inside an instruction and crash either
with SIGILL or a SIGSEGV, or misbehave (depending on how the truncated
instruction is decoded).
native.(*Thread).StepInstruction should call FindBreakpoint using
adjustPC==false because at that point the PC of the thread should
already have been adjusted (and it has been).
proc.Next and proc.Step will call, after setting their temp
breakpoints, curthread.SetCurrentBreakpoint. This is intended to find
if one of the newly created breakpoints happens to be at the same
instruction that curthread is stopped at.
However SetCurrentBreakpoint is intended to be called after a Continue
and StepInstruction operation so it will also detect if curthread is
stopped one byte after a breakpoint.
If the instruction immediately preceeding the current instruction of
curthread happens to:
1. have one of the newly created temp breakpoints
2. be one byte long
SetCurrentBreakpoint will believe that we just hit that breakpoint and
therefore the instruction should be repeated, and thus rewind the PC of
curthread by 1.
We should distinguish between the two uses of SetCurrentBreakpoint and
disable the check for "just hit" breakpoints when inappropriate.
Fixes#1656
RestoreRegisters on linux would also restore FS_BASE and GS_BASE, if
the target goroutine migrated to a different thread during the call
injection this would result in two threads of the target process
pointing to the same TLS area which would greatly confuse the target
runtime, leading to fatal panics with nonsensical stack traces.
Other backends are unaffected:
- native/windows doesn't store the TLS in the same CONTEXT struct as
the other register values.
- native/darwin doesn't support function calls (and wouldn't store the
TLS value in the same struct)
- gdbserial/rr doesn't support function calls (because it's a
recording)
- gsdbserial/lldb extracts the value of TLS by executing code in the
target process.
Adds initial support for plugins, this is only the code needed to keep
track of loaded plugins on linux (both native and gdbserial backend).
It does not actually implement support for debugging plugins on linux.
Updates #865
The repository is being switched from the personal account
github.com/derekparker/delve to the organization account
github.com/go-delve/delve. This patch updates imports and docs, while
preserving things which should not be changed such as my name in the
CHANGELOG and in TODO comments.
If proc.Step encounters a CALL instruction that points to an address
that isn't associated with any function it should still follow the
CALL.
The circumstances creating this problem do not normally occur, it was
encountered in the process of fixing a bug created by Go1.12.
This patch is a slight refactor to share more code used for genericprocess initialization. There will always be OS/backend specificinitialization, but as much as can be shared should be to preventduplicating of any logic (setting internal breakpoints, loading bininfo,etc).
The linux version of proc/native and proc/core contained largely
overlapping implementations of the register handling code, deduplicate
it by moving it into proc/linutil.
Some libraries (for example steam_api64.dll) will send this exception
code to set the thread name on Microsoft VisualC.
In theory it should be fine to send the exception back to the target,
which is responsible for setting a handler for it, in practice in some
cases (steam_api64.dll) this will crash the program. So we'll mask it
instead.
Fixes#1383
Support for position independent executables (PIE) on the native linux
backend, the gdbserver backend on linux and the core backend.
Also implemented in the windows native backend, but it can't be tested
because go doesn't support PIE on windows yet.