Internal breakpoints do not need IDs and assigning them from a counter
separate from the user ID counter can be a cause of confusion.
If a user breakpoint is overlayed on top of a pre-existing internal
breakpoint the temporary ID will be surfaced as if it was a user ID,
possibly conflicting with another user ID.
If a temporary breakpoint is overlayed on top of a pre-existing user
breakpoint and the user breakpoint is first deleted and then
re-created, the user ID will be resurrected along with the breakpoint,
instead of allocating a fresh one.
This change removes internal breakpoint IDs entirely, only user
breakpoints receive an ID.
Log points are special kinds of breakpoints that do not 'break' but instead log a message and then continue. This change implements basic log points that simply log the provided message, without any interpolation.
In order to resume execution after hitting a breakpoint, I added a new lock resumeMu and tracked the running state within the DAP server. resumeMu must be held in order to issue a debugger request that would start execution. This means it can be used to make sure that another goroutine does not resume execution while you are holding the lock.
Most of the synchronization logic is taken from PR #2530
Updates golang/vscode-go#123
This patch enables the eBPF tracer backend to parse the ID of the
Goroutine which hit the uprobe. This implementation is specific to AMD64
and will have to be generalized further in order to be used on other
architectures.
* terminal,service: add way to see internal breakpoints
Now that Delve has internal breakpoints that survive for long periods
of time it will be useful to have an option to display them.
* proc,terminal,service: support stack watchpoints
Adds support for watchpoints on stack allocated variables.
When a stack variable is watched, in addition to the normal watchpoint
some support breakpoints are created:
- one breakpoint inside runtime.copystack, used to adjust the address
of the watchpoint when the stack is resized
- one or more breakpoints used to detect when the stack variable goes
out of scope, those are similar to the breakpoints set by StepOut.
Implements #279
Changes Breakpoint to allow multiple overlapping internal breakpoints
on the same instruction address.
This is done by changing the Breakpoint structure to contain a list of
"breaklets", each breaklet has a BreakpointKind and a condition
expression, independent of the other.
A breakpoint is considered active if any of its breaklets are active.
A breakpoint is removed when all its breaklets are removed.
We also change the terminology "internal breakpoint" to "stepping
breakpoint":
HasInternalBreakpoints -> HasSteppingBreakpoints
IsInternal -> IsStepping
etc...
The motivation for this change is implementing watchpoints on stack
variables.
Watching a stack variable requires also setting a special breakpoint to
find out when the variable goes out of scope. These breakpoints can not
be UserBreakpoints because only one user breakpoint is allowed on the
same instruction and they can not be internal breakpoints because they
should not be cleared when a next operation is completed (they should
be cleared when the variable watch is cleared).
Updates #279
* proc: support new Go 1.17 panic/defer mechanism
Go 1.17 will create wrappers for deferred calls that take arguments.
Change defer reading code so that wrappers are automatically unwrapped.
Also the deferred function is called directly by runtime.gopanic, without going through runtime.callN which means that sometimes when a panic happens the stack is either:
0. deferred function call
1. deferred call wrapper
2. runtime.gopanic
or:
0. deferred function call
1. runtime.gopanic
instead of always being:
0. deferred function call
1. runtime.callN
2. runtime.gopanic
the isPanicCall check is changed accordingly.
* test: miscellaneous minor test fixes for Go 1.17
* proc: resolve inlined calls when stepping out of runtime.breakpoint
Calls to runtime.Breakpoint are inlined in Go 1.17 when inlining is
enabled, resolve inlined calls in stepInstructionOut.
* proc: add support for debugCallV2 with regabi
This change adds support for the new debug call protocol which had to
change for the new register ABI introduced in Go 1.17.
Summary of changes:
- Abstracts over the debug call version depending on the Go version
found in the binary.
- Uses R12 instead of RAX as the debug protocol register when the binary
is from Go 1.17 or later.
- Creates a variable directly from the DWARF entry for function
arguments to support passing arguments however the ABI expects.
- Computes a very conservative stack frame size for the call when
injecting a call into a Go process whose version is >=1.17.
Co-authored-by: Michael Anthony Knyszek <mknyszek@google.com>
Co-authored-by: Alessandro Arzilli <alessandro.arzilli@gmail.com>
* TeamCity: enable tests on go-tip
* goversion: version compatibility bump
* TeamCity: fix go-tip builds on macOS/arm64
Co-authored-by: Michael Anthony Knyszek <mknyszek@google.com>
Adds filtering and grouping to the goroutines command.
The current implementation of the goroutines command is modeled after
the threads command of gdb. It works well for programs that have up to
a couple dozen goroutines but becomes unusable quickly after that.
This commit adds the ability to filter and group goroutines by several
different properties, allowing a better debugging experience on
programs that have hundreds or thousands of goroutines.
Ensure that any command executed after the process we are trying to
debug prints a correct and consistent exit status.
Previously the exit code was being lost after the first time we printed
that a process has exited. Additionally, certain commands would print
the PID of the process and other would not. This change makes everything
more correct and consistent.
Commit 30cdedae6910f5e9af6739845bacfd5b8778e745 introduced a dependency
from service/dap to pkg/terminal to call a stack printing function,
it's weird to have code that implements the DAP protocol depend on the
code for the JSON-RPC client.
Move PrintStack to a different package that can be called by both.
* pkg/proc: implement support for hit count breakpoints
* update comment
* udpate hitcount comment
* update HitCond description
* add test for hit condition error
* respond to review
* service/dap: add support for hit count breakpoints
* use amendbps to preserve hit counts
* update test health doc
* fix failing test
* simplify hit conditions
* REmove RequestString, use name instead
* update backend_test_health.md
* document hit count cond
* fix tests
A RequestManualStop received while the target program is stopped can
induce a crash when the target is restarted.
This is caused by the phantom breakpoint detection that was introduced
in PR #2179 / commit e69d536.
Instead of always interpreting an unexplained SIGTRAP as a phantom
breakpoint memorize all possible unreported breakpoint hits and only
act on it when the thread hasn't moved from one.
Also clarifies the behavior of the halt command when it is received
while the target is stopped or in the process of stopping.
Changes the expression evaluation code so that register names, when not
shadowed by local or global variables, will evaluate to the current
value of the corresponding CPU register.
This allows a greater flexibility with displaying CPU registers than is
possible with using the ListRegisters API call. Also it allows
debuggers users to view register values even if the frontend they are
using does not implement a register view.
Changes print so a format argument can be specified by using '%' as
prefix. For example:
print %x d
will print variable 'd' in hexadecimal. The interpretarion of the
format argument is the same as that of fmt's package.
Fixes#1038Fixes#1800Fixes#2159
* Adds toggle command
Also adds two rpc2 tests for testing the new functionality
* Removes Debuggers' ToggleBreakpoint method
rpc2's ToggleBreakpoint now calls AmendBreakpoint
Refactors the ClearBreakpoint to avoid a lock.
* proc/core: off-by-one error reading ELF core files
core.(*splicedMemory).ReadMemory checked the entry interval
erroneously when dealing with contiguous entries.
* terminal,service,proc/*: adds dump command (gcore equivalent)
Adds the `dump` command that creates a core file from the target process.
Backends will need to implement a new, optional, method `MemoryMap` that
returns a list of mapped memory regions.
Additionally the method `DumpProcessNotes` can be implemented to write out
to the core file notes describing the target process and its threads. If
DumpProcessNotes is not implemented `proc.Dump` will write a description of
the process and its threads in a OS/arch-independent format (that only Delve
understands).
Currently only linux/amd64 implements `DumpProcessNotes`.
Core files are only written in ELF, there is no minidump or macho-o writers.
# Conflicts:
# pkg/proc/proc_test.go
Adds a flag that distinguishes the return values of an injected
function call from the return values of a function call executed by the
target program.
Move the conversion of some 'proc' types from service/debugger into
service/rpc1 and service/rpc2. The methods of
service/debugger.(*Debugger) are also used by service/dap which
requires these types to be converted differently and converting them
twice is inefficent and doesn't make much sense.
Updates #2161
Since proc is supposed to work independently from the target
architecture it shouldn't use architecture-dependent types, like
uintptr. For example when reading a 64bit core file on a 32bit
architecture, uintptr will be 32bit but the addresses proc needs to
represent will be 64bit.
When reading truncated core files GoroutinesInfo will sometimes produce
some proc.G structs with only the Unreadable field set. These proc.G
can not be used for anything, but the service layer will still try to
convert them.
Since they are not fully initialized parts of the conversion will fail,
api.ConvertGoroutine should not try to call methods of unreadable
goroutines.
Fixes a bug reported on the mailing list.
https://groups.google.com/forum/#!msg/delve-dev/gauDqYaD81c/K5YDNBOhAAAJ
Changes implementations of proc.Registers interface and the
op.DwarfRegisters struct so that floating point registers can be loaded
only when they are needed.
Removes the floatingPoint parameter from proc.Thread.Registers.
This accomplishes three things:
1. it simplifies the proc.Thread.Registers interface
2. it makes it impossible to accidentally create a broken set of saved
registers or of op.DwarfRegisters by accidentally calling
Registers(false)
3. it improves general performance of Delve by avoiding to load
floating point registers as much as possible
Floating point registers are loaded under two circumstances:
1. When the Slice method is called with floatingPoint == true
2. When the Copy method is called
Benchmark before:
BenchmarkConditionalBreakpoints-4 1 4327350142 ns/op
Benchmark after:
BenchmarkConditionalBreakpoints-4 1 3852642917 ns/op
Updates #1549
* cmd/dlv,debugger: Improve dlv trace and trace command output
This patch improves the `dlv trace` subcommand output by reducing the
noise that is generated and providing clearer more concise information.
Also adds new tests closing a gap in our testing (we previously never
really tested this subcommand).
This patch also fixes the `dlv trace` REPL command to behave like the
subcommand in certain situations. If the tracepoint is for a function,
we now show function arguements and return values properly.
Also makes the overall output of the trace subcommand clearer.
Fixes#2027
Allows Delve clients to stop a recording midway by sending a
Command('halt')
request.
This is implemented by changing debugger.New to start recording the
process on a separate goroutine while holding the processMutex locked.
By locking the processMutex we ensure that almost all RPC requests will
block until the recording is done, since we can not respond correctly
to any of them.
API calls that do not require manipulating or examining the target
process, such as "IsMulticlient", "SetApiVersion" and
"GetState(nowait=true)" will work while we are recording the process.
Two other internal changes are made to the API: both GetState and
Restart become asynchronous requests, like Command. Restart because
this way it can be interrupted by a StopRecording request if the
rerecord option is passed.
GetState because clients need a call that will block until the
recording is compelted and can also be interrupted with a
StopRecording.
Clients that are uninterested in allowing the user to stop a recording
can ignore this change, since eventually they will make a request to
Delve that will block until the recording is completed.
Clients that wish to support this feature must:
1. call GetState(nowait=false) after connecting to Delve, before any
call that would need to manipulate the target process
2. allow the user to send a StopRecording request during the initial
GetState call
3. allow the user to send a StopRecording request during any subsequent
Restart(rerecord=true) request (if supported).
Implements #1747
* *: Fix go vet struct complaints
* *: Fix struct vet issue on linux
* *: Ignore proc/native in go vet check
We have to do some unsafe pointer manipulation that will never make go
vet happy within the proc/native package. Ignore it for runs of go vet.
* proc: move defer breakpoint code into a function
Moves the code that sets a breakpoint on the first deferred function,
used by both next and StepOut, to its function.
* proc: implement reverse step/next/stepout
When the direction of execution is reversed (on a recording) Step, Next and
StepOut will behave similarly to their forward version. However there are
some subtle interactions between their behavior, prologue skipping, deferred
calls and normal calls. Specifically:
- when stepping backwards we need to set a breakpoint on the first
instruction after each CALL instruction, once this breakpoint is reached we
need to execute a single StepInstruction operation to reverse step into the
CALL.
- to insure that the prologue is skipped reverse next needs to check if it
is on the first instruction after the prologue, and if it is behave like
reverse stepout.
- there is no reason to set breakpoints on deferred calls when reverse
nexting or reverse stepping out, they will never be hit.
- reverse step out should generally place its breakpoint on the CALL
instruction that created the current stack frame (which will be the CALL
instruction immediately preceding the instruction at the return address).
- reverse step out needs to treat panic calls and deferreturn calls
specially.
* service,terminal: implement reverse step, next, stepout
1. Don't use intelligent '#' in fmt of go because it is not always satisfying
for diffrent version of golang. Always keep one leading zero for octal and
one leading '0x' for hex manually. Then keep alignment for every byte.
2. Always keep addr alignment when the lens of two adjacent address are
different.
Update #1814.
Adds an optional scope prefix to the `regs` command which allows
printing registers for any stack frame (as long as they were somehow
saved). Issue #1838 is not yet to be closed since we are still not
recovering the registers of a segfaulting frame.
Updates #1838
According to #1800#1584#1038, `dlv` should enable the user to dive into
memory. User can print binary data in specific memory address range.
But not support for sepecific variable name or structures temporarily.(Because
I have no idea that modify `print` command.)
Close#1584.
A significant amount of time is spent generating the string
representation for the proc.Registers object of each thread, since this
field is rarely used (only when the Registers API is called) it should
be generated on demand.
Also by changing the internal representation of proc.Register to be
closer to that of op.DwarfRegister it will help us implement #1838
(when Delve will need to be able to display the registers of an
internal frame, which we currently represent using op.DwarfRegister
objects).
Benchmark before:
BenchmarkConditionalBreakpoints-4 1 22292554301 ns/op
Benchmark after:
BenchmarkConditionalBreakpoints-4 1 17326345671 ns/op
Reduces conditional breakpoint latency from 2.2ms to 1.7ms.
Updates #1549, #1838
Adds an API call that returns a list of packages contained in the
program and the files that were used to build them, and also a best
guess at which filesystem directory contained the package when it was
built.
This can be used by IDEs to map file paths if the debugging environment
doesn't match the build environment exactly.
Changes CreateBreakpoint to create a logical breakpoint when multiple
addresses are specified, FindLocation and the api.Location type to
return logical locations and the cli to support logical breakpoints.
Modifies FindFileLocation, FindFunctionLocation and LineToPC as well as
service/debugger to support inlining and introduces the concept of
logical breakpoints.
For inlined functions FindFileLocation, FindFunctionLocation and
LineToPC will now return one PC address for each inlining and one PC
for the concrete implementation of the function (if present).
A proc.Breakpoint will continue to represent a physical breakpoint, at
a single memory location.
Breakpoints returned by service/debugger, however, will represent
logical breakpoints and may be associated with multiple memory
locations and, therefore, multiple proc.Breakpoints.
The necessary logic is introduced in service/debugger so that a change
to a logical breakpoint will be mirrored to all its physical
breakpoints and physical breakpoints are aggregated into a single
logical breakpoint when returned.
Add options to start a stacktrace from the values saved in the
runtime.g struct as well as a way to disable the stackSwitch logic and
just get a normal stacktrace.
Add variables flag to mark variables that are allocated on a register
(and have no address) and variables that we read as result of a
function call (and are allocated on a stack that no longer exists when
we show them to the user).