delve/pkg/proc/arm64_arch.go

436 lines
16 KiB
Go
Raw Normal View History

package proc
import (
"bytes"
"encoding/binary"
"fmt"
"runtime"
"github.com/go-delve/delve/pkg/dwarf/frame"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/regnum"
"github.com/go-delve/delve/pkg/goversion"
)
var arm64BreakInstruction = []byte{0x0, 0x0, 0x20, 0xd4}
// Windows ARM64 expects a breakpoint to be compiled to the instruction BRK #0xF000.
// See go.dev/issues/53837.
var arm64WindowsBreakInstruction = []byte{0x0, 0x0, 0x3e, 0xd4}
// ARM64Arch returns an initialized ARM64
// struct.
func ARM64Arch(goos string) *Arch {
var brk []byte
if goos == "windows" {
brk = arm64WindowsBreakInstruction
} else {
brk = arm64BreakInstruction
}
return &Arch{
Name: "arm64",
ptrSize: 8,
maxInstructionLength: 4,
breakpointInstruction: brk,
breakInstrMovesPC: goos == "windows",
derefTLS: false,
prologues: prologuesARM64,
fixFrameUnwindContext: arm64FixFrameUnwindContext,
switchStack: arm64SwitchStack,
regSize: arm64RegSize,
RegistersToDwarfRegisters: arm64RegistersToDwarfRegisters,
addrAndStackRegsToDwarfRegisters: arm64AddrAndStackRegsToDwarfRegisters,
DwarfRegisterToString: arm64DwarfRegisterToString,
inhibitStepInto: func(*BinaryInfo, uint64) bool { return false },
asmDecode: arm64AsmDecode,
usesLR: true,
PCRegNum: regnum.ARM64_PC,
SPRegNum: regnum.ARM64_SP,
ContextRegNum: regnum.ARM64_X0 + 26,
LRRegNum: regnum.ARM64_LR,
asmRegisters: arm64AsmRegisters,
RegisterNameToDwarf: nameToDwarfFunc(regnum.ARM64NameToDwarf),
RegnumToString: regnum.ARM64ToName,
debugCallMinStackSize: 288,
maxRegArgBytes: 16*8 + 16*8, // 16 int argument registers plus 16 float argument registers
argumentRegs: []int{regnum.ARM64_X0, regnum.ARM64_X0 + 1, regnum.ARM64_X0 + 2},
}
}
func arm64FixFrameUnwindContext(fctxt *frame.FrameContext, pc uint64, bi *BinaryInfo) *frame.FrameContext {
a := bi.Arch
if a.sigreturnfn == nil {
a.sigreturnfn = bi.lookupOneFunc("runtime.sigreturn")
}
if fctxt == nil || (a.sigreturnfn != nil && pc >= a.sigreturnfn.Entry && pc < a.sigreturnfn.End) {
// When there's no frame descriptor entry use BP (the frame pointer) instead
// - return register is [bp + a.PtrSize()] (i.e. [cfa-a.PtrSize()])
// - cfa is bp + a.PtrSize()*2
// - bp is [bp] (i.e. [cfa-a.PtrSize()*2])
// - sp is cfa
// When the signal handler runs it will move the execution to the signal
// handling stack (installed using the sigaltstack system call).
// This isn't a proper stack switch: the pointer to g in TLS will still
// refer to whatever g was executing on that thread before the signal was
// received.
// Since go did not execute a stack switch the previous value of sp, pc
// and bp is not saved inside g.sched, as it normally would.
// The only way to recover is to either read sp/pc from the signal context
// parameter (the ucontext_t* parameter) or to unconditionally follow the
// frame pointer when we get to runtime.sigreturn (which is what we do
// here).
return &frame.FrameContext{
RetAddrReg: regnum.ARM64_PC,
Regs: map[uint64]frame.DWRule{
regnum.ARM64_PC: {
Rule: frame.RuleOffset,
Offset: int64(-a.PtrSize()),
},
regnum.ARM64_BP: {
Rule: frame.RuleOffset,
Offset: int64(-2 * a.PtrSize()),
},
regnum.ARM64_SP: {
Rule: frame.RuleValOffset,
Offset: 0,
},
},
CFA: frame.DWRule{
Rule: frame.RuleCFA,
Reg: regnum.ARM64_BP,
Offset: int64(2 * a.PtrSize()),
},
}
}
if a.crosscall2fn == nil {
a.crosscall2fn = bi.lookupOneFunc("crosscall2")
}
if a.crosscall2fn != nil && pc >= a.crosscall2fn.Entry && pc < a.crosscall2fn.End {
rule := fctxt.CFA
if rule.Offset == crosscall2SPOffsetBad {
rule.Offset += crosscall2SPOffset
}
fctxt.CFA = rule
}
// We assume that RBP is the frame pointer, and we want to keep it updated,
// so that we can use it to unwind the stack even when we encounter frames
// without descriptor entries.
// If there isn't a rule already we emit one.
if fctxt.Regs[regnum.ARM64_BP].Rule == frame.RuleUndefined {
fctxt.Regs[regnum.ARM64_BP] = frame.DWRule{
Rule: frame.RuleFramePointer,
Reg: regnum.ARM64_BP,
Offset: 0,
}
}
if fctxt.Regs[regnum.ARM64_LR].Rule == frame.RuleUndefined {
fctxt.Regs[regnum.ARM64_LR] = frame.DWRule{
Rule: frame.RuleRegister,
Reg: regnum.ARM64_LR,
Offset: 0,
}
}
return fctxt
}
const arm64cgocallSPOffsetSaveSlot = 0x8
const prevG0schedSPOffsetSaveSlot = 0x10
func arm64SwitchStack(it *stackIterator, callFrameRegs *op.DwarfRegisters) bool {
linux := runtime.GOOS == "linux"
if it.frame.Current.Fn == nil {
if it.systemstack && it.g != nil && it.top {
it.switchToGoroutineStack()
return true
}
return false
}
switch it.frame.Current.Fn.Name {
case "runtime.cgocallback_gofunc", "runtime.cgocallback":
if linux {
// For a detailed description of how this works read the long comment at
// the start of $GOROOT/src/runtime/cgocall.go and the source code of
// runtime.cgocallback_gofunc in $GOROOT/src/runtime/asm_arm64.s
//
// When a C function calls back into go it will eventually call into
// runtime.cgocallback_gofunc which is the function that does the stack
// switch from the system stack back into the goroutine stack
// Since we are going backwards on the stack here we see the transition
// as goroutine stack -> system stack.
if it.top || it.systemstack {
return false
}
it.loadG0SchedSP()
if it.g0_sched_sp <= 0 {
return false
}
// Entering the system stack.
it.regs.Reg(callFrameRegs.SPRegNum).Uint64Val = it.g0_sched_sp
// Reads the previous value of g0.sched.sp that runtime.cgocallback_gofunc saved on the stack.
it.g0_sched_sp, _ = readUintRaw(it.mem, it.regs.SP()+prevG0schedSPOffsetSaveSlot, int64(it.bi.Arch.PtrSize()))
it.top = false
callFrameRegs, ret, retaddr := it.advanceRegs()
frameOnSystemStack := it.newStackframe(ret, retaddr)
it.pc = frameOnSystemStack.Ret
it.regs = callFrameRegs
it.systemstack = true
return true
}
case "runtime.asmcgocall":
if linux {
if it.top || !it.systemstack {
return false
}
// This function is called by a goroutine to execute a C function and
// switches from the goroutine stack to the system stack.
// Since we are unwinding the stack from callee to caller we have to switch
// from the system stack to the goroutine stack.
off, _ := readIntRaw(it.mem, it.regs.SP()+arm64cgocallSPOffsetSaveSlot,
int64(it.bi.Arch.PtrSize()))
oldsp := it.regs.SP()
newsp := uint64(int64(it.stackhi) - off)
it.regs.Reg(it.regs.SPRegNum).Uint64Val = uint64(int64(newsp))
// runtime.asmcgocall can also be called from inside the system stack,
// in that case no stack switch actually happens
if it.regs.SP() == oldsp {
return false
}
it.top = false
it.systemstack = false
// The return value is stored in the LR register which is saved at 24(SP).
addrret := uint64(int64(it.regs.SP()) + int64(it.bi.Arch.PtrSize()*3))
it.frame.Ret, _ = readUintRaw(it.mem, addrret, int64(it.bi.Arch.PtrSize()))
it.pc = it.frame.Ret
return true
}
case "runtime.goexit", "runtime.rt0_go":
// Look for "top of stack" functions.
it.atend = true
return true
case "runtime.mcall":
if it.systemstack && it.g != nil {
it.switchToGoroutineStack()
return true
}
it.atend = true
return true
case "crosscall2":
// The offsets get from runtime/cgo/asm_arm64.s:10
bpoff := uint64(14)
lroff := uint64(15)
if producer := it.bi.Producer(); producer != "" && goversion.ProducerAfterOrEqual(producer, 1, 19) {
// In Go 1.19 (specifically eee6f9f82) the order registers are saved was changed.
bpoff = 22
lroff = 23
}
newsp, _ := readUintRaw(it.mem, it.regs.SP()+8*24, int64(it.bi.Arch.PtrSize()))
newbp, _ := readUintRaw(it.mem, it.regs.SP()+8*bpoff, int64(it.bi.Arch.PtrSize()))
newlr, _ := readUintRaw(it.mem, it.regs.SP()+8*lroff, int64(it.bi.Arch.PtrSize()))
if it.regs.Reg(it.regs.BPRegNum) != nil {
it.regs.Reg(it.regs.BPRegNum).Uint64Val = newbp
} else {
reg, _ := it.readRegisterAt(it.regs.BPRegNum, it.regs.SP()+8*bpoff)
it.regs.AddReg(it.regs.BPRegNum, reg)
}
it.regs.Reg(it.regs.LRRegNum).Uint64Val = newlr
if linux {
it.regs.Reg(it.regs.SPRegNum).Uint64Val = newbp
} else {
it.regs.Reg(it.regs.SPRegNum).Uint64Val = newsp
}
it.pc = newlr
return true
case "runtime.mstart":
if linux {
// Calls to runtime.systemstack will switch to the systemstack then:
// 1. alter the goroutine stack so that it looks like systemstack_switch
// was called
// 2. alter the system stack so that it looks like the bottom-most frame
// belongs to runtime.mstart
// If we find a runtime.mstart frame on the system stack of a goroutine
// parked on runtime.systemstack_switch we assume runtime.systemstack was
// called and continue tracing from the parked position.
if it.top || !it.systemstack || it.g == nil {
return false
}
if fn := it.bi.PCToFunc(it.g.PC); fn == nil || fn.Name != "runtime.systemstack_switch" {
return false
}
it.switchToGoroutineStack()
return true
}
case "runtime.newstack", "runtime.systemstack":
if it.systemstack && it.g != nil {
it.switchToGoroutineStack()
return true
}
}
fn := it.bi.PCToFunc(it.frame.Ret)
if fn == nil {
return false
}
switch fn.Name {
case "runtime.asmcgocall":
if !it.systemstack {
return false
}
// This function is called by a goroutine to execute a C function and
// switches from the goroutine stack to the system stack.
// Since we are unwinding the stack from callee to caller we have to switch
// from the system stack to the goroutine stack.
off, _ := readIntRaw(it.mem, callFrameRegs.SP()+arm64cgocallSPOffsetSaveSlot, int64(it.bi.Arch.PtrSize()))
oldsp := callFrameRegs.SP()
newsp := uint64(int64(it.stackhi) - off)
// runtime.asmcgocall can also be called from inside the system stack,
// in that case no stack switch actually happens
if newsp == oldsp {
return false
}
it.systemstack = false
callFrameRegs.Reg(callFrameRegs.SPRegNum).Uint64Val = uint64(int64(newsp))
return false
case "runtime.cgocallback_gofunc", "runtime.cgocallback":
// For a detailed description of how this works read the long comment at
// the start of $GOROOT/src/runtime/cgocall.go and the source code of
// runtime.cgocallback_gofunc in $GOROOT/src/runtime/asm_arm64.s
//
// When a C functions calls back into go it will eventually call into
// runtime.cgocallback_gofunc which is the function that does the stack
// switch from the system stack back into the goroutine stack
// Since we are going backwards on the stack here we see the transition
// as goroutine stack -> system stack.
if it.systemstack {
return false
}
it.loadG0SchedSP()
if it.g0_sched_sp <= 0 {
return false
}
// entering the system stack
callFrameRegs.Reg(callFrameRegs.SPRegNum).Uint64Val = it.g0_sched_sp
// reads the previous value of g0.sched.sp that runtime.cgocallback_gofunc saved on the stack
it.g0_sched_sp, _ = readUintRaw(it.mem, callFrameRegs.SP()+prevG0schedSPOffsetSaveSlot, int64(it.bi.Arch.PtrSize()))
it.systemstack = true
return false
}
return false
}
func arm64RegSize(regnum uint64) int {
// fp registers
if regnum >= 64 && regnum <= 95 {
return 16
}
return 8 // general registers
}
var arm64NameToDwarf = func() map[string]int {
r := make(map[string]int)
for i := 0; i <= 30; i++ {
r[fmt.Sprintf("x%d", i)] = i
}
r["pc"] = int(regnum.ARM64_PC)
r["lr"] = int(regnum.ARM64_LR)
r["sp"] = 31
for i := 0; i <= 31; i++ {
r[fmt.Sprintf("v%d", i)] = i + 64
}
return r
}()
func arm64RegistersToDwarfRegisters(staticBase uint64, regs Registers) *op.DwarfRegisters {
dregs := initDwarfRegistersFromSlice(int(regnum.ARM64MaxRegNum()), regs, regnum.ARM64NameToDwarf)
dr := op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.ARM64_PC, regnum.ARM64_SP, regnum.ARM64_BP, regnum.ARM64_LR)
dr.SetLoadMoreCallback(loadMoreDwarfRegistersFromSliceFunc(dr, regs, arm64NameToDwarf))
return dr
}
func arm64AddrAndStackRegsToDwarfRegisters(staticBase, pc, sp, bp, lr uint64) op.DwarfRegisters {
dregs := make([]*op.DwarfRegister, regnum.ARM64_PC+1)
dregs[regnum.ARM64_PC] = op.DwarfRegisterFromUint64(pc)
dregs[regnum.ARM64_SP] = op.DwarfRegisterFromUint64(sp)
dregs[regnum.ARM64_BP] = op.DwarfRegisterFromUint64(bp)
dregs[regnum.ARM64_LR] = op.DwarfRegisterFromUint64(lr)
return *op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.ARM64_PC, regnum.ARM64_SP, regnum.ARM64_BP, regnum.ARM64_LR)
}
func arm64DwarfRegisterToString(i int, reg *op.DwarfRegister) (name string, floatingPoint bool, repr string) {
name = regnum.ARM64ToName(uint64(i))
if reg == nil {
return name, false, ""
}
if reg.Bytes != nil && name[0] == 'V' {
buf := bytes.NewReader(reg.Bytes)
var out bytes.Buffer
var vi [16]uint8
for i := range vi {
_ = binary.Read(buf, binary.LittleEndian, &vi[i])
}
//D
fmt.Fprintf(&out, " {\n\tD = {u = {0x%02x%02x%02x%02x%02x%02x%02x%02x,", vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0])
fmt.Fprintf(&out, " 0x%02x%02x%02x%02x%02x%02x%02x%02x},", vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8])
fmt.Fprintf(&out, " s = {0x%02x%02x%02x%02x%02x%02x%02x%02x,", vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0])
fmt.Fprintf(&out, " 0x%02x%02x%02x%02x%02x%02x%02x%02x}},", vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8])
//S
fmt.Fprintf(&out, " \n\tS = {u = {0x%02x%02x%02x%02x,0x%02x%02x%02x%02x,", vi[3], vi[2], vi[1], vi[0], vi[7], vi[6], vi[5], vi[4])
fmt.Fprintf(&out, " 0x%02x%02x%02x%02x,0x%02x%02x%02x%02x},", vi[11], vi[10], vi[9], vi[8], vi[15], vi[14], vi[13], vi[12])
fmt.Fprintf(&out, " s = {0x%02x%02x%02x%02x,0x%02x%02x%02x%02x,", vi[3], vi[2], vi[1], vi[0], vi[7], vi[6], vi[5], vi[4])
fmt.Fprintf(&out, " 0x%02x%02x%02x%02x,0x%02x%02x%02x%02x}},", vi[11], vi[10], vi[9], vi[8], vi[15], vi[14], vi[13], vi[12])
//H
fmt.Fprintf(&out, " \n\tH = {u = {0x%02x%02x,0x%02x%02x,0x%02x%02x,0x%02x%02x,", vi[1], vi[0], vi[3], vi[2], vi[5], vi[4], vi[7], vi[6])
fmt.Fprintf(&out, " 0x%02x%02x,0x%02x%02x,0x%02x%02x,0x%02x%02x},", vi[9], vi[8], vi[11], vi[10], vi[13], vi[12], vi[15], vi[14])
fmt.Fprintf(&out, " s = {0x%02x%02x,0x%02x%02x,0x%02x%02x,0x%02x%02x,", vi[1], vi[0], vi[3], vi[2], vi[5], vi[4], vi[7], vi[6])
fmt.Fprintf(&out, " 0x%02x%02x,0x%02x%02x,0x%02x%02x,0x%02x%02x}},", vi[9], vi[8], vi[11], vi[10], vi[13], vi[12], vi[15], vi[14])
//B
fmt.Fprintf(&out, " \n\tB = {u = {0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,", vi[0], vi[1], vi[2], vi[3], vi[4], vi[5], vi[6], vi[7])
fmt.Fprintf(&out, " 0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x},", vi[8], vi[9], vi[10], vi[11], vi[12], vi[13], vi[14], vi[15])
fmt.Fprintf(&out, " s = {0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,", vi[0], vi[1], vi[2], vi[3], vi[4], vi[5], vi[6], vi[7])
fmt.Fprintf(&out, " 0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x}}", vi[8], vi[9], vi[10], vi[11], vi[12], vi[13], vi[14], vi[15])
//Q
fmt.Fprintf(&out, " \n\tQ = {u = {0x%02x%02x%02x%02x%02x%02x%02x%02x", vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8])
fmt.Fprintf(&out, "%02x%02x%02x%02x%02x%02x%02x%02x},", vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0])
fmt.Fprintf(&out, " s = {0x%02x%02x%02x%02x%02x%02x%02x%02x", vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8])
fmt.Fprintf(&out, "%02x%02x%02x%02x%02x%02x%02x%02x}}\n\t}", vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0])
return name, true, out.String()
} else if reg.Bytes == nil || (reg.Bytes != nil && len(reg.Bytes) < 16) {
return name, false, fmt.Sprintf("%#016x", reg.Uint64Val)
}
return name, false, fmt.Sprintf("%#x", reg.Bytes)
}