- use PT_SUSPEND/PT_RESUME to control running threads in
resume/stop/singleStep
- change manual stop signal from SIGTRAP to SIGSTOP to make manual stop
handling simpler
- change (*nativeProcess).trapWaitInternal to suspend newly created
threads when we are stepping a thread
- change (*nativeProcess).trapWaitInternal to handle some unhandled
stop events
- remove misleading (*nativeProcess).waitFast which does not do
anything different from the normal wait variant
- rewrite (*nativeProcess).stop to only set breakpoints for threads of
which we have received SIGTRAP
- rewrite (*nativeThread).singleStep to actually execute a single
instruction and to properly route signals
* proc: move breakpoint condition evaluation out of backends
Moves breakpoint condition evaluation from the point where breakpoints
are set, inside ContinueOnce, to (*Target).Continue.
This accomplishes three things:
1. the breakpoint evaluation method needs not be exported anymore
2. breakpoint condition evaluation can be done with a full scope,
containing a Target object, something that wasn't possible before
because ContinueOnce doesn't have access to the Target object.
3. moves breakpoint condition evaluation out of the critical section
where some of the threads of the target process might be still
running.
* proc/native: handle process death during stop() on Windows
It is possible that the thread dies while we are inside the stop()
function. This results in an Access is denied error being returned by
SuspendThread being called on threads that no longer exist.
Delay the reporting the error from SuspendThread until the end of
stop() and only report it if the thread still exists at that point.
Fixes flakyness with TestIssue1101 that was exacerbated by moving
breakpoint condition evaluation outside of the backends.
* pkg/proc: implement support for hit count breakpoints
* update comment
* udpate hitcount comment
* update HitCond description
* add test for hit condition error
* respond to review
* service/dap: add support for hit count breakpoints
* use amendbps to preserve hit counts
* update test health doc
* fix failing test
* simplify hit conditions
* REmove RequestString, use name instead
* update backend_test_health.md
* document hit count cond
* fix tests
Adds the low-level support for watchpoints (aka data breakpoints) to
the native linux/amd64 backend.
Does not add user interface or functioning support for watchpoints
on stack variables.
Updates #279
Delve represents registerized variables (fully or partially) using
compositeMemory, implementing proc.(*compositeMemory).WriteMemory is
necessary to make SetVariable and function calls work when Go will
switch to using the register calling convention in 1.17.
This commit also makes some refactoring by moving the code that
converts between register numbers and register names out of pkg/proc
into a different package.
On linux we can not read memory if the thread we use to do it is
occupied doing certain system calls. The exact conditions when this
happens have never been clear.
This problem was worked around by using the Blocked method which
recognized the most common circumstances where this would happen.
However this is a hack: Blocked returning true doesn't mean that the
problem will manifest and Blocked returning false doesn't necessarily
mean the problem will not manifest. A side effect of this is issue
#2151 where sometimes we can't read the memory of a thread and find its
associated goroutine.
This commit fixes this problem by always reading memory using a thread
we know to be good for this, specifically the one returned by
ContinueOnce. In particular the changes are as follows:
1. Remove (ProcessInternal).CurrentThread and
(ProcessInternal).SetCurrentThread, the "current thread" becomes a
field of Target, CurrentThread becomes a (*Target) method and
(*Target).SwitchThread basically just sets a field Target.
2. The backends keep track of their own internal idea of what the
current thread is, to use it to read memory, this is the thread they
return from ContinueOnce as trapthread
3. The current thread in the backend and the current thread in Target
only ever get synchronized in two places: when the backend creates a
Target object the currentThread field of Target is initialized with the
backend's current thread and when (*Target).Restart gets called (when a
recording is rewound the currentThread used by Target might not exist
anymore).
4. We remove the MemoryReadWriter interface embedded in Thread and
instead add a Memory method to Process that returns a MemoryReadWriter.
The backends will return something here that will read memory using
the current thread saved by the backend.
5. The Thread.Blocked method is removed
One possible problem with this change is processes that have threads
with different memory maps. As far as I can determine this could happen
on old versions of linux but this option was removed in linux 2.5.
Fixes#2151
Since proc is supposed to work independently from the target
architecture it shouldn't use architecture-dependent types, like
uintptr. For example when reading a 64bit core file on a 32bit
architecture, uintptr will be 32bit but the addresses proc needs to
represent will be 64bit.
Changes implementations of proc.Registers interface and the
op.DwarfRegisters struct so that floating point registers can be loaded
only when they are needed.
Removes the floatingPoint parameter from proc.Thread.Registers.
This accomplishes three things:
1. it simplifies the proc.Thread.Registers interface
2. it makes it impossible to accidentally create a broken set of saved
registers or of op.DwarfRegisters by accidentally calling
Registers(false)
3. it improves general performance of Delve by avoiding to load
floating point registers as much as possible
Floating point registers are loaded under two circumstances:
1. When the Slice method is called with floatingPoint == true
2. When the Copy method is called
Benchmark before:
BenchmarkConditionalBreakpoints-4 1 4327350142 ns/op
Benchmark after:
BenchmarkConditionalBreakpoints-4 1 3852642917 ns/op
Updates #1549
* pkg/proc: Introduce Target
* pkg/proc: Remove Common.fncallEnabled
Realistically we only block it on recorded backends.
* pkg/proc: Move fncallForG to Target
* pkg/proc: Remove CommonProcess
Remove final bit of functionality stored in CommonProcess and move it to
*Target.
* pkg/proc: Add SupportsFunctionCall to Target
arm64 use hardware breakpoint, and it will not set PC to the next instruction like amd64. Let adjustPC always fasle in arm64, in case of infinite loop.
Fixes a case of breakpoint confusion on resume caused by having two
breakpoints one byte apart. This bug can cause the target program to
resume execution a single byte inside an instruction and crash either
with SIGILL or a SIGSEGV, or misbehave (depending on how the truncated
instruction is decoded).
native.(*Thread).StepInstruction should call FindBreakpoint using
adjustPC==false because at that point the PC of the thread should
already have been adjusted (and it has been).
proc.Next and proc.Step will call, after setting their temp
breakpoints, curthread.SetCurrentBreakpoint. This is intended to find
if one of the newly created breakpoints happens to be at the same
instruction that curthread is stopped at.
However SetCurrentBreakpoint is intended to be called after a Continue
and StepInstruction operation so it will also detect if curthread is
stopped one byte after a breakpoint.
If the instruction immediately preceeding the current instruction of
curthread happens to:
1. have one of the newly created temp breakpoints
2. be one byte long
SetCurrentBreakpoint will believe that we just hit that breakpoint and
therefore the instruction should be repeated, and thus rewind the PC of
curthread by 1.
We should distinguish between the two uses of SetCurrentBreakpoint and
disable the check for "just hit" breakpoints when inappropriate.
Fixes#1656
The repository is being switched from the personal account
github.com/derekparker/delve to the organization account
github.com/go-delve/delve. This patch updates imports and docs, while
preserving things which should not be changed such as my name in the
CHANGELOG and in TODO comments.
Fncall.go was written with the assumption that the object returned by
proc.Thread.Registers does not change after we call
proc.Thread.SetPC/etc.
This is true for the native backend but not for gdbserial. I had
anticipated this problem and introduced the Save/SavedRegisters
mechanism during the first implementation of fncall.go but that's
insufficient.
Instead:
1. clarify that the object returned by proc.Thread.Registers could
change when the CPU registers are modified.
2. add a Copy method to Registers that returns a copy of the registers
that are guaranteed not to change when the CPU registers change.
3. remove the Save/SavedRegisters mechanism.
This solution leaves us the option, in the future, to cache the output
of proc.(Thread).Registers, avoiding a system call every time it's
called.
Implements the function call injection protocol introduced in go 1.11
by https://go-review.googlesource.com/c/go/+/109699.
This is only the basic support, see TODO comments in pkg/proc/fncall.go
for a list of missing features.
Updates #119
Displays the return values of the current function when we step out of
it after executing a step, next or stepout command.
Implementation of this feature is tricky: when the function has
returned the return variables are not in scope anymore. Implementing
this feature requires evaluating variables that are out of scope, using
a stack frame that doesn't exist anymore.
We can't calculate the address of these variables when the
next/step/stepout command is initiated either, because between that
point and the time where the stepout breakpoint is actually hit the
goroutine stack could grow and be moved to a different memory address.
If a breakpoint is hit close to process death on a thread that isn't
the group leader the process could die while we are trying to stop it.
This can be easily reproduced by having the goroutine that's executing
main.main (which will almost always run on the thread group leader)
wait for a second goroutine before exiting, then setting a breakpoint
on the second goroutine and stepping through it (see TestIssue1101 in
proc_test.go).
When stepping over the return instruction of main.f the deferred
wg.Done() call will be executed which will cause the main goroutine to
resume and proceed to exit. Both the temporary breakpoint on wg.Done
and the temporary breakpoint on the return address of main.f will be in
close proximity to main.main calling os.Exit() and causing the death of
the thread group leader.
Under these circumstances the call to native.(*Thread).waitFast in
native.(*Thread).halt can hang forever due to a bug similar to
https://sourceware.org/bugzilla/show_bug.cgi?id=12702 (see comment in
native.(*Thread).wait for an explanation).
Replacing waitFast with a normal wait work in most circumstances,
however, besides the performance hit, it looks like in this
circumstances trapWait sometimes receives a spurious SIGTRAP on the
dying group leader which would cause the subsequent call to wait in
halt to accidentally reap the process without noting that it did exit.
Instead this patch removes the call to wait from halt and instead calls
trapWait in a loop in setCurrentBreakpoints until all threads are set
to running=false. This is also a better fix than the workaround to
ESRCH error while setting current breakpoints implemented in 94b50d.
Fixes#1101
Conditional breakpoints with unmet conditions would cause next and step
to skip the line.
This breakpoint changes the Kind field of proc.Breakpoint from a single
value to a bit field, each breakpoint object can represent
simultaneously a user breakpoint and one internal breakpoint (of which
we have several different kinds).
The breakpoint condition for internal breakpoints is stored in the new
internalCond field of proc.Breakpoint so that it will not conflict with
user specified conditions.
The breakpoint setting code is changed to allow overlapping one
internal breakpoint on a user breakpoint, or a user breakpoint on an
existing internal breakpoint. All other combinations are rejected. The
breakpoint clearing code is changed to clear the UserBreakpoint bit and
only remove the phisical breakpoint if no other bits are set in the
Kind field. ClearInternalBreakpoints does the same thing but clearing
all bits that aren't the UserBreakpoint bit.
Fixes#844
Move some duplicate code, related to breakpoints, that was in both
backends into a single place.
This is in preparation to solve issue #844 (conditional breakpoints
make step and next fail) which will make this common breakpoint code
more complicated.
* Fix various issues detected by megacheck
I've ran honnef.co/go/tools/cmd/megacheck and fixed a few of the
things that came up there.
* Cleanup using Gogland